深度学习论文: SmolVLM: Redefining small and efficient multimodal models

深度学习论文: SmolVLM: Redefining small and efficient multimodal models
SmolVLM: Redefining small and efficient multimodal models
PDF: https://arxiv.org/abs/2504.05299
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks

1 概述

大型视觉语言模型(VLMs)虽性能出众,却因对计算资源需求极高,难以在移动设备与边缘设备上部署。而小型 VLMs 往往照搬大型模型的设计思路,例如采用复杂的图像 token 化方案,这不仅导致 GPU 内存利用率低下,也严重制约了其在终端设备上的实际应用价值。

为此,本文提出了 SmolVLM—— 一系列专为资源高效推理打造的紧凑型多模态模型。通过系统探索针对低计算开销优化的架构配置、token 化策略与数据筛选方法,本文提炼出关键设计方案:既能显著提升图像与视频任务的性能表现,又能将内存占用控制在极小范围。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mingo_敏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值