波士顿房价预测任务(线性回归模型)

博主分享了利用13个因素构建波士顿房价预测模型的过程,包括数据介绍、代码实现和预测结果。文章呼吁读者关注并指出可能存在的错误,要求转载时注明出处。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面: 我是「虐猫人薛定谔i」,一个不满足于现状,有梦想,有追求的00后
\quad
本博客主要记录和分享自己毕生所学的知识,欢迎关注,第一时间获取更新。
\quad
不忘初心,方得始终。
\quad

❤❤❤❤❤❤❤❤❤❤

数据介绍

该数据集统计了13种可能影响房价的因素和该类型房屋的均价,我们期望构建一个基于13个因素进行房价预测的模型。
在这里插入图片描述

代码

import numpy as np
import matplotlib.pyplot as plt


def load_data():
    # 从文件导入数据
    datafile = './res/housing.data'
    data = np.fromfile(datafile, sep=' ')
    feature_names = [
        'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
        'PTRATIO', 'B', 'LSTAT', 'MEDV'
    ]
    feature_num = len(feature_names)
    data = data.reshape([data.shape[0] // feature_num, feature_num])
    ratio = 0.8
    offset = int(data.shape
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值