现代很多操作系统都是支持多任务的操作系统,简单的说,就是操作系统可以同时运行多个任务,你可以一边听音乐,一边打游戏,这就是多任务
对操作系统来说,一个任务就是一个进程(Process),有些进程不止做一件事情,在进程内部,要同时干多件事情,就需要同时运行多个子任务,我们把进程内的这些子任务称为线程(Thread)
线程是最小的执行单元,而进程由至少一个线程组成。如何调度进程和线程,完全由操作系统决定,程序自己不能决定什么时候执行,执行多长时间
多任务的实现方式
- 多进程模式
- 多线程模式
- 多进程+多线程模式
Python既支持多进程,又支持多线程
多进程
"""
多进程
"""
from multiprocessing import Process
import os
def run_process(name):
print('Run child process %s (%s)' % (name, os.getpid()))
if __name__ == '__main__':
print('Parent process %s' % os.getpid())
p = Process(target=run_process, args=('process1', ))
p.start()
p.join()
print('Child process end')
Parent process 13728
Run child process process1 (9944)
Child process end
Process finished with exit code 0
创建子进程时,只需要传入一个执行函数和函数的参数,就可以创建一个Process实例了,可以用start()方法来启动,join()方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步
如果我们要启动大量子进程,可以使用进程池的方式批量创建子进程
"""
进程池
"""
import os
import random
import time
from multiprocessing import Pool
def long_time_task(name):
print('Run task %s (%s)' % (name, os.getpid()))
start = time.time()
time.sleep(random.random() * 3)
end = time.time()
print('Task %s runs %0.2f seconds' % (name, (end - start)))
if __name__ == '__main__':
print('Parent process %s' % os.getpid())
p = Pool(4)
for i in range(5):
p.apply_async(long_time_task, args=(i,))
print('Waiting for all subprocess done...')
p.close()
p.join()
print('All subprocess done')
Parent process 11100
Waiting for all subprocess done...
Run task 0 (11508)
Run task 1 (11612)
Run task 2 (14016)
Run task 3 (1016)
Task 0 runs 0.03 seconds
Run task 4 (11508)
Task 3 runs 0.06 seconds
Task 1 runs 0.36 seconds
Task 2 runs 0.71 seconds
Task 4 runs 2.27 seconds
All subprocess done
Process finished with exit code 0
我们还可以用subprocess模块来启动一个子进程,然后控制其输入和输出
"""
子进程
"""
import subprocess
print('ping')
p = subprocess.Popen(['ping', 'www.python.org'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output, err = p.communicate()
print(output.decode('gbk'))
print('exit code: ', p.returncode)
ping
正在 Ping dualstack.python.map.fastly.net [151.101.108.223] 具有 32 字节的数据:
来自 151.101.108.223 的回复: 字节=32 时间=97ms TTL=52
来自 151.101.108.223 的回复: 字节=32 时间=111ms TTL=52
来自 151.101.108.223 的回复: 字节=32 时间=139ms TTL=52
来自 151.101.108.223 的回复: 字节=32 时间=137ms TTL=52
151.101.108.223 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 97ms,最长 = 139ms,平均 = 121ms
exit code: 0
Process finished with exit code 0
eg:使用Queue实现进程之间的通信
在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据
"""
进程之间的通信
"""
import os
import random
import time
from multiprocessing import Process, Queue
def write_data(queue1):
"""
写数据进程执行的代码
:param queue1:
:return:
"""
print('Process to write: %s' % os.getpid())
for value in ['A', 'B', 'C']:
print('Put %s to queue' % value)
queue1.put(value)
time.sleep(random.random())
def read_data(queue1):
"""
读数据进程执行的代码
:param queue1:
:return:
"""
print('Process to read: %s' % os.getpid())
while True:
value = queue1.get(True)
print('Get %s from queue' % value)
if __name__ == '__main__':
q = Queue()
pw = Process(target=write_data, args=(q,))
pr = Process(target=read_data, args=(q,))
pw.start()
pr.start()
pw.join()
pr.terminate()
Process to read: 14992
Process to write: 9172
Put A to queue
Get A from queue
Put B to queue
Get B from queue
Put C to queue
Get C from queue
Process finished with exit code 0
多线程
多任务可以由多进程完成,也可以由一个进程内的多线程完成
"""
多线程
"""
import threading
import time
def loop():
print('thread %s is running' % threading.current_thread().name)
n = 0
while n < 5:
n += 1
print('thread %s >>> %s' % (threading.current_thread().name, n))
time.sleep(1)
print('thread %s end' % threading.current_thread().name)
print('thread %s is running' % threading.current_thread().name)
t = threading.Thread(target=loop, name='LoopThread')
t.start()
t.join()
print('thread %s end' % threading.current_thread().name)
thread MainThread is running
thread LoopThread is running
thread LoopThread >>> 1
thread LoopThread >>> 2
thread LoopThread >>> 3
thread LoopThread >>> 4
thread LoopThread >>> 5
thread LoopThread end
thread MainThread end
Process finished with exit code 0
注意:由于Python解释器在执行代码时,有一个GIL锁,因此,可以在Python使用多线程,但是不要指望能有效利用多核,不过,也不用太担心,Python虽然不能利用多线程实现多核任务,但是可以通过多进程实现多核任务。多个Python进程有各自独立的GIL锁,互不影响
蒟蒻写博客不易,加之本人水平有限,写作仓促,错误和不足之处在所难免,谨请读者和各位大佬们批评指正。
如需转载,请署名作者并附上原文链接,蒟蒻非常感激
名称:虐猫人薛定谔
博客地址:https://blog.csdn.net/Deep___Learning