机器学习(MACHINE LEARNING)MATLAB求解状态转移矩阵

本文详细介绍了转移矩阵的概念,它是马尔科夫分析中的核心元素,用于描述系统状态之间的转移概率。通过一个天气预报的例子,展示了如何用矩阵形式表示状态转移概率,并解释了每一列之和为1的原因。最后,提供了使用Matlab代码求解状态转移矩阵的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 转移矩阵

转移概率矩阵(又叫跃迁矩阵,英文名:transition matrix)是俄国数学家马尔科夫提出的,他在20世纪初发现:一个系统的某些因素在转移中,第n次结果只受第n-1的结果影响,即只与当前所处状态有关,而与过去状态无关。 在马尔科夫分析中,引入状态转移这个概念。所谓状态是指客观事物可能出现或存在的状态;状态转移是指客观事物由一种状态转移到另一种状态的概率。
转移矩阵:矩阵各元素都是非负的,并且各行元素之和等于1,各元素用概率表示,在一定条件下是互相转移的,故称为转移概率矩阵。如用于市场决策时,矩阵中的元素是市场或顾客的保留、获得或失去的概率。P^(k)表示k步转移矩阵。
在这里插入图片描述
谓矩阵,是指许多个数组成的一个数表。每个数称为矩阵的元素。矩阵的表示方法是用括号将矩阵中的元素括起来,以表示它是一个整体。
矩阵中的行数与列数可以相等,也可以不等。当它们相等时,矩阵就是一个方阵。由转移概率组成的矩阵就是转移概率矩阵。也就是说构成转移概率矩阵的元素是一个个的转移概率.

2 举例

例如对应于一个天气预报的问题,若天气状态转移概率表如下:
(其中行表示今天概率,列表示明天概率。注意每一列之和为1,因为已假设明天仅这三种状态。)
在这里插入图片描述
写作矩阵形式为图所示。
在这里插入图片描述
其中转移矩阵A的每一个元素都表示从今天的一种状态到明天的一种状态的概率,例如,第2行第3列的值为1/2,这表示今天下雨而明天转阴的概率是1/2。
每一列之和为1.

3 代码求解状态转移矩阵

求状态转移矩阵,现给出矩阵如下:
在这里插入图片描述
采用拉普拉斯变换法,matlab代码如下:

syms s t x0 tao phi phi0;声明变量
A=[-13/7 -2/7;4/7 -22/7];
I=[1 0;0 1];
E=s*I-A;
C=det(E);
D=collect(inv(E));
phi0=ilaplace(D)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值