归并排序的 cuda 加速分析

本文探讨了利用CUDA对归并排序进行并行加速的思路,将数组分段并行合并。通过对比GPU并行版本与CPU串行版本的运行时间,展示了GPU的并行优势。接下来,作者计划尝试多线程块和共享内存优化,并探索双调排序在GPU上的性能潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

思路

把数组分成多段, 把相邻两段的有序数组合并,由于有很多段,因此可以并行的方式同时合并。合并完之后段数减半(每段长度加倍),然后继续上一过程进行并行化地合并,直到最后只剩下一段数组,那就是整个数组都排好序。

代码如下

作为对比,一个CPU串行版本的归并排序,与GPU并行版本的排序对比运行时间。(其中,函数mergeSort_gpu调用了GPU上运行的kernel核函数mergeVec_half;另外手写了一个CPU串行版本的归并排序的函数mergeSort_cpu作为对比)

#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <time.h> 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值