Pytorch 自动求导的设计与实现

本文介绍了PyTorch自动求导的工作原理,包括其设计思想和实现方式。通过重载运算符,PyTorch构建了一个有状态的计算图,允许梯度沿着计算图反向流动,实现自动求导。文中还提供了一个简单的线性回归例子来验证自动求导的正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载:Automatic Differentiation Tutorial

简介

梯度下降(Gradient Descent)及其衍生算法是神经网络训练的基础,梯度下降本质上就是求解损失关于网络参数的梯度,不断计算这个梯度对网络参数进行更新。现代的神经网络框架都实现了自动求导的功能,只需要要定义好网络前向计算的逻辑,在运算时自动求导模块就会自动把梯度算好,不用自己手写求导梯度。

笔者在之前的 一篇文章中讲解和实现了一个迷你的神经网络框架 tinynn,在 tinynn 中我们定义了网络层 layer 的概念,整个网络是由一层层的 layer 叠起来的(全连接层、卷积层、激活函数层、Pooling 层等等),如下图所示:
在这里插入图片描述
在实现的时候需要显示为每层定义好前向 forward 和反向 backward(梯度计算)的计算逻辑。从本质上看这些 layer 其实是一组基础算子的组合,而这些基础算子(加减乘除、矩阵变

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值