MICCAI 2022:使用自适应条形采样和双分支 Transformer 的 DA-Net

DA-Net是MICCAI 2022上提出的一种深度学习方法,旨在结合image-level和patches-level的数据优势。通过双分支Transformer模块(DBTM)和自适应条状Upsampling Block(ASUB),该网络能够同时利用局部和全局上下文信息,尤其适用于视网膜血管的分割任务,针对视网膜血管的条状分布特点,ASUB设计了特定的卷积核以提高分割效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

  • 前言
  • 概述
  • 网络简介
  • DBTM:Local Patches Meet Global Context
  • ASUB block
  • 实验
  • 讨论
  • 参考链接

前言

这是 MICCAI 2022 上的第三篇阅读笔记了,之前两篇也都可以在 GiantPandaCV 公众号搜索到。如下图所示,目前的视网膜血管分割方法按照输入数据划分有两类:image-level 和 patches-level,每一种方法都有自己的优势,如何将两者结合起来是一个需要去解决的问题,这也是 DA-Net 这篇文章的贡献之一。此外,这篇文章还提出了一个自适应的条状 Upsampling Block,我们会在后面展开介绍。文章地址可在最后参考链接找到,SpringerLink 和 ACM 上都可以下载。
请添加图片描述

概述

目前的视网膜血管分割方法根据输入类型大致分为 image-level 和 patches-level 方法,为了从这两种输入形式中受益,这篇文章引入了一个双分支 Transformer 模块࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值