TMI 2023:对比半监督学习的领域适应(跨相似解剖结构)分割

本文提出了一种名为CS-CADA的方法,用于解决医学图像分割中的跨解剖域适应问题。通过结合领域特定批归一化(DSBN)、自我集成平均教师(SE-MT)和跨域对比学习,该方法在有限的目标域标注数据下,提高了模型的分割性能。实验表明,CS-CADA在心脏MRI和眼底图像等跨域分割任务中表现出色,接近全监督学习的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

  • 前言

  • 前置知识

    • Semi-supervised Learning
    • Domain Adaptation
    • Contrastive Learning
  • CS-CADA 方法介绍

    • Joint Learning with Domain-Specific Batch Normalization(DSBN)
    • Self-Ensembling Mean Teacher (SE-MT) with DSBN
    • Cross-Domain Contrastive Learning
  • Overall Training Loss

  • 实验和可视化

  • 总结

  • 参考

本文首发于 GiantPandaCV,未经允许不得转载!!

前言

U-Net 在医学图像分割方面已经取得了最先进的表现,但是需要大量手动注释的图像来进行训练。半监督学习(SSL)方法可以减少注释的需求,但是当数据集和注释图像数量较小时,其性能仍然受到限制。利用具有相似解剖结构的现有标注数据集来辅助训练可以提高模型性能。但是,这个方法面临的挑战是由

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值