基于 torch 的特征图可视化(热图)的实现

本文介绍了如何利用Python和torch库对深度学习模型中的特征图进行可视化,通过在预训练的ResNet50模型上设置钩子保存目标层输出,计算平均特征图,并将其转化为热力图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

代码

import torch
from torchvision import models
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt

# 加载预训练模型
model = models.resnet50(pretrained
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值