AdaBoost算法清晰解释和举例

AdaBoost(Adaptive Boosting)

AdaBoost 是一种集成学习算法,通过组合多个弱分类器(仅比随机猜测略好的简单模型)构建强分类器。其核心思想是 自适应调整样本权重,重点关注分类错误的样本,逐步提升整体模型性能。


核心步骤

  1. 初始化样本权重
    对于包含 N N N 个样本的数据集,初始权重为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值