AdaBoost(Adaptive Boosting) AdaBoost 是一种集成学习算法,通过组合多个弱分类器(仅比随机猜测略好的简单模型)构建强分类器。其核心思想是 自适应调整样本权重,重点关注分类错误的样本,逐步提升整体模型性能。 核心步骤 初始化样本权重: 对于包含 N N N 个样本的数据集,初始权重为: