自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

AI人工智能的学习之路

归零,更新 重启,向上! 归零,不沉溺过去 更新,不止步于现状 重启,不受限于旧习惯 向上,不断攀升

  • 博客(320)
  • 资源 (8)
  • 收藏
  • 关注

原创 MCTS-RAG:通过树搜索重塑小模型中的检索增强生成(RAG)

MCTS-RAG框架的核心思想是在推理过程中动态结合检索操作,探索多个推理路径,并在关键决策点评估中间状态。具体来说,框架在每个MCTS决策点设计了六种离散动作,包括直接回答、快速推理、分解问题、检索推理、检索分解和总结回答。这些动作帮助模型在推理过程中灵活地结合外部知识,从而提高准确性

2025-05-22 00:45:00 1484 63

原创 从零开始用Python构建一个推理LLM(类似 o3 和 DeepSeek-R1):详细的端到端指南

本文介绍了如何从零开始使用 Python 创建一个 200 万参数的推理型语言模型(LLM),并逐步通过预训练、有监督微调(SFT)和基于人类反馈的强化学习(RLHF)三个阶段赋予其推理能力。作者详细展示了如何训练分词器、构建 Transformer 模型、设计数据集加载器,并通过代码示例和训练循环展示了每个阶段的实现过程。最终,模型能够生成包含“思考”和“回答”标签的推理式回答,尽管在小数据集上表现有限,但在更大数据集上训练时表现出了较好的推理能力。

2025-05-21 02:45:00 1678 35

原创 RAG-MCP:通过检索增强生成缓解大型语言模型工具选择中的提示膨胀问题

RAG-MCP框架通过结合检索增强生成(RAG)原则和MCP框架,解决了LLMs在外部工具选择中的提示膨胀和决策复杂性问题。该框架的核心是语义检索模块,它将工具元数据表示为向量空间中的点,并高效匹配用户查询与最相关的工具,从而减少提示大小和复杂性,提高决策准确性。MCP压力测试表明,随着工具数量的增加,传统方法面临提示膨胀和决策开销问题,而RAG-MCP通过动态检索最相关的工具,显著提高了选择准确性和系统可扩展性。实验结果显示,RAG-MCP在选择准确性、提示令牌使用和任务成功率方面优于基线方法。然而,该方

2025-05-19 01:15:00 2736 16

原创 Qwen-3 微调实战:用 Python 和 Unsloth 打造专属 AI 模型

本文详细介绍了如何利用 Python 和 Unsloth 对 Qwen-3 模型进行微调,以打造专属的 AI 模型。文章首先强调了 Qwen-3 在各项基准测试中的出色表现,随后详细阐述了微调所需的 Python 库、计算资源以及数据准备策略。接着,通过具体的代码示例,展示了从模型初始化、添加 LoRA 适配器到数据预处理、模型训练以及推理的全过程。最后,还介绍了如何保存和推送微调后的模型至 Hugging Face Hub,为读者提供了一套完整的实战指南。

2025-05-15 02:00:00 6845 52

原创 测试17种引导AI的提示工程技巧:从零样本到更复杂的ReAct

本文探讨了在1B参数的LLaMA模型上测试17种提示工程技巧的效果,旨在通过优化提示方式提升小型LLM的生成结果。文章首先介绍了提示工程的重要性,强调通过改进提示内容可以引导模型生成更准确、创意或可靠的回答。接着,文章详细描述了如何搭建测试环境,包括加载模型和定义相关函数。随后,文章通过具体示例展示了零样本、少样本和角色提示等技巧的应用。零样本提示适用于简单任务,而少样本提示通过提供示例帮助模型更好地理解复杂任务。角色提示则通过指定模型扮演特定角色来调整回答的风格和内容。这些技巧的测试结果表明,合理使用提示

2025-05-14 20:00:00 2106 26

原创 构建最优的 RAG 检索增强生成系统:为你的数据集找到最优解

本文介绍了如何为数据集创建最佳的RAG(检索增强生成)管道。通过系统性地测试不同的参数组合(如分块大小、重叠度、检索数量)和策略(简单RAG、查询重写、重排),结合忠实度、相关性和语义相似度等评估指标,找出最适合特定数据集的RAG配置。实验结果表明,简单RAG策略在效率和效果上表现最佳。文章还提出了未来可进一步探索的方向,如测试更多模型、优化提示和混合搜索策略等。

2025-05-05 00:30:00 1274 45

原创 详解如何一步步拿下企业年报问答RAG挑战赛冠军

本文揭秘如何斩获企业级RAG挑战赛双料冠军的完整技术方案。面对100份千页PDF年报的极限解析任务,他创新性地组合了GPU加速解析、多级检索路由和LLM重排序等技术:先用改造后的Docling解析器40分钟完成文本提取,再通过"小块定位+整页返回"的检索策略平衡精度与上下文,最后用结构化提示词工程让GPT-4o-mini在2分钟内完成100道题的高精度作答。文章幽默呈现了与PDF格式的搏斗历程,揭示了表格序列化实验的反转结局,并强调冠军方案的核心在于对业务场景的深度理解

2025-04-15 00:00:00 7637 60

原创 详解如何复现DeepSeek R1:从零开始利用Python构建

本文详细介绍了从零开始构建 DeepSeek R1 的过程,涵盖了从基础模型选择、训练数据准备到多阶段训练的完整流程。首先,通过强化学习(RL)和 GRPO 算法训练出 R1 Zero,解决了基础模型的推理能力问题。接着,通过监督式微调(SFT)和冷启动数据,进一步优化模型的推理风格和语言一致性。最后,通过推理导向的强化学习、拒绝采样以及知识蒸馏等技术,不断提升模型的推理质量和实用性,最终得到高效且推理能力强的 DeepSeek R1 模型。整个过程不仅注重技术实现,还通过详细示例和代码,让读者能够清晰地理

2025-04-11 00:00:00 4205 58

原创 详解如何从零用 Python复现类似 GPT-4o 的多模态模型

在这篇博客中,我们从零开始构建了一个多模态模型,能够处理文本、图像、视频和音频,并根据文本提示生成图像。我们首先实现了 BPE 分词器,将文本分解为子词标记。接着,我们构建了一个基于 Transformer 的语言模型,能够生成文本。然后,我们将模型扩展为多模态,通过 ResNet 提取图像特征,并将这些特征与文本结合,使模型能够回答关于图像的问题。我们还展示了如何通过文本提示生成图像特征向量,并找到最接近的已知图像。整个过程不仅展示了多模态模型的强大能力,还揭示了其在实际应用中的潜力。

2025-04-10 00:00:00 15450 109

原创 如何使用 FastAPI 构建 MCP 服务器

哎呀,各位算法界的小伙伴们!今天咱们要聊聊一个超酷的话题——MCP 协议!你可能已经听说了,Anthropic 推出了这个新玩意儿,目的是让 AI 代理和你的应用程序之间的对话变得更顺畅、更清晰。不过别担心,为你的 Python 应用程序搭建一个这样的服务器并不复杂,甚至可以说简单到让你怀疑人生!想象一下,AI 就像你的私人助理,而 MCP 就是它和你家大门之间的钥匙。让 AI 去操心那些繁琐的逻辑吧,咱就负责躺平享受成果。不管你是想连数据库还是接 API,MCP 都能帮你搞定。

2025-03-31 11:20:36 2747 35

原创 使用Python从零开始构建千万级参数的大型语言模型(LLM)

徒手pytho撸出Transformer架构并一步步训练处一个LLM大模型

2025-03-22 00:15:00 1458 10

原创 图解LLM智能体(LLM Agents):构建与运作机制的全面解析

本文深入探讨了大型语言模型(LLM)智能体的构建与运作机制,涵盖其核心组件和多智能体框架。LLM智能体通过外部工具、记忆系统和规划能力弥补了传统LLM的不足,能够执行复杂任务并展示自主行为。文章详细介绍了记忆模块(短期与长期记忆)、工具使用(如Toolformer和MCP协议)以及规划与推理技术(如ReAct和Reflexion)。此外,多智能体系统的协作框架被提出,用于解决单一智能体在工具选择、上下文复杂性和任务专业化上的局限性。生成式智能体(Generative Agents)模拟人类行为的研究展示了多

2025-03-18 13:35:10 2220 5

原创 徒手打造个人AI Agent:基于DeepSeek-R1+websearch从零构建类Manus深度探索智能体AI-Research

该系统能够在预定义的主题上进行深入研究。研究计划:这意味着创建一个研究报告大纲,这将成为系统的最终输出。将上述内容拆分为可管理的步骤。对报告的各个部分进行深入研究。针对推理所需的数据,进行全面的分析,并利用网络搜索工具支持分析。反思研究过程中不同步骤生成的数据,并改进结果。总结检索到的数据,并生成最终的研究报告。今天,我们将实现上述所有步骤,而不使用任何LLM编排框架。首先,我们需要定义整个系统的状态,该状态将在代理运行过程中不断演变,并被系统的不同部分选择性地使用。

2025-03-16 00:15:00 2024 18

原创 【开源+代码解读】Search-R1:基于强化学习的检索增强大语言模型框架3小时即可打造个人AI-search

强化学习驱动检索:首次将RL应用于LLM与搜索引擎的多轮交互,突破传统监督学习限制。轻量化奖励设计:仅用结果奖励即可引导模型学习复杂检索策略。结构化生成框架:通过标记控制生成流程,兼容不同RL算法。

2025-03-13 13:57:02 3246 18

原创 从理解强化学习及其在 LLM 中的作用开始手把手教你构建DeepSeek-R1推理模型

本文深入探讨了强化学习(RL)在大型语言模型(LLM)训练中的应用,特别是通过人类反馈强化学习(RLHF)技术对齐人类偏好。文章重点介绍了组相对策略优化(GRPO)这一创新算法,其通过生成多个响应组、组内归一化优势计算和KL散度约束,显著提升了训练效率和稳定性。此外,本文详细解析了DeepSeek R1模型的四阶段训练流程,展示了其在数学和编程任务中的卓越表现。最后,文章还介绍了如何在TRL库中实现GRPO,并提供了配置参数、奖励函数设计和训练监控指标等实用建议

2025-03-05 01:15:00 1982 12

原创 从零开始,用 MCP 打造真正“会思考”的 RAG 智能体 —— 实战指南 + 源码解析

本文介绍了一种基于Model Context Protocol(MCP)构建的Agentic RAG系统,通过让LLM自主决定检索时机、内容和来源,实现私有知识和实时联网的双引擎协同。相比传统RAG固定查询单一知识库的模式,该系统能动态选择内部文档或实时网页,通过MCP协议实现工具的安全调用和数据访问。架构包含MCP服务器(智能体)、客户端及双向通信机制,支持向量数据库搜索和网页搜索两种工具。文章详细阐述了系统搭建步骤,包括环境配置、MCP服务器部署和RAG管道构建,最终实现能处理复杂查询的智能应用。

2025-07-23 13:04:07 841

原创 大部分时间你是需要融合结构化数据的检索增强生成(RAG)

结构化RAG:精准智能问答的核心技术 结构化RAG(检索增强生成)是传统RAG的升级版本,通过逻辑推理而非语义相似性实现精准问答。其核心流程包括四个关键步骤: 智能解析:采用布局感知分块技术,保留文档逻辑结构 知识提取:将文本转化为"实体-关系-属性"三元组 知识图谱构建:建立结构化索引系统(实体/动作/主题索引) 混合查询机制: 先进行符号逻辑搜索(确保精确性) 低置信度时自动切换向量搜索(保证灵活性) 这种架构使系统既能处理"列出爱丽丝批准的合同"等精确查询,也能

2025-07-14 14:26:10 66

原创 LangChain发布的智能体6步构建指南

智能体的能力不是“训练”出来的,而是靠“测试和人类反馈”一步步打磨出来的

2025-07-14 09:14:56 744

原创 从零实现一个基于 mem0的具有长期记忆的Text2SQL代理

智能查询助手通过实现跨用户会话的长期记忆功能,改变了传统的文本转SQL体验。受Mem0架构启发,此实现专门专注于数据库查询交互,并保持完整的用户隔离,提供个性化、安全的体验。

2025-07-14 09:09:37 876

原创 一次使用 RAFT 和 Qwen3 实现端到端领域RAG自适应

介绍了使用 RAFT 方法微调小型语言模型的端到端过程。我们首先使用 llama-index 和 AI生成结构化训练数据,应用聊天风格的格式,并使用 Unsloth 微调 Qwen3 模型。整个目标是保持高效并针对域进行定制。我们还研究了如何保存和导出模型以进行部署。

2025-06-22 16:07:20 677 10

原创 LLM智能体指南:如何使用LangGraph和CrewAI自动化处理复杂任务

详细介绍了两个主要开源框架:LangGraph提供基于图的工作流控制,CrewAI支持多智能体角色协作。通过构建电子邮件日程自动化项目,演示了从环境搭建到代码实现的完整流程。智能体可以扫描邮件、提取会议和任务、生成清晰的日程安排。多智能体协作通过专业分工(提取器、优先级排序器、格式化器)提高效率。文章还讨论了安全隐私考虑、故障排除技巧和未来发展趋势,包括更智能的记忆系统、多模态处理和边缘部署。这些工具使开发者能够构建真正智能的自动化助手。

2025-06-17 14:46:18 863 18

原创 AI智能体的智能记忆系统:Agentic Memory

详细介绍了三种记忆类型:短期记忆(工作记忆)用于维持当前对话上下文;长期记忆包括程序性记忆(行为模式)、情景记忆(具体经历)和语义记忆(事实知识)。通过LangGraph框架,展示了如何在生产环境中实现记忆管理,包括检查点机制、数据库集成和语义搜索。核心案例是构建一个具备完整记忆功能的电子邮件智能体,演示了如何将三种记忆类型有机结合。该智能体能够学习用户偏好、记住项目上下文、优化处理策略,并基于反馈自我改进。这标志着从无状态工具向真正智能的有状态智能体的关键转变。

2025-06-17 12:49:56 1118 41

原创 Paper2Poster-PosterAgent:在几分钟内将您的研究论文变成海报

如何从科学论文自动生成学术海报。学术海报在科学交流中起着重要作用,需要在短时间内向与会者传达论文的核心发现。然而,现有的自动化幻灯片生成系统在海报生成方面仍存在显著挑战。

2025-06-15 09:41:37 850 10

原创 复习embedding编码范式及理解代理Agentic RAG及传统RAG的区别

本文介绍了三种句子嵌入编码范式(Bi-encoders、Cross-encoders、ColBERT)及其在NLP系统中的应用,重点对比了它们的交互能力与计算效率差异。传统RAG系统通过线性流程增强LLM生成能力,而智能体RAG(Agentic RAG)引入AI代理机制,通过动态规划、多工具协作实现更智能的检索-生成流程。代码示例展示了如何用LangChain构建代理RAG系统,其核心优势在于意图理解、策略规划和多步信息整合能力,显著提升了复杂查询的处理效果。两种RAG架构的区别类

2025-06-13 20:30:00 1584 6

原创 AI与机器学习ML:利用Python 从零实现神经网络

本文介绍了神经网络的基本结构与工作原理。通过一个包含10个观测值和3个特征变量的简单数据集示例,详细阐述了神经网络的前向传播过程,包括输入层、隐藏层和输出层的计算流程。文章重点讲解了反向传播机制和梯度下降算法,说明如何利用损失函数(二进制交叉熵)来调整权重和偏差参数,以最小化预测误差。示例中展示了ReLU和Sigmoid激活函数的使用场景,并演示了从输入数据到预测输出的完整计算过程,为理解神经网络的内部机制提供了清晰的技术路径。

2025-06-13 14:49:29 934 2

原创 如何设计一个用于大规模生产任务的人工智能AI系统

大规模AI系统构建的关键阶段 本文探讨了构建能够服务数百万用户、处理TB级数据的AI系统所需的核心开发阶段。第一阶段聚焦系统硬件与基础设施,详细分析了三种主流计算硬件(CPU/GPU/TPU)的适用场景,以及FPGA、ASIC等新型硬件的优势。文章指出硬件选择需结合模型架构和量化技术,并比较了不同云服务方案的性价比。 在分布式系统方面,强调了任务分解、资源自动调配和性能监控的重要性。网络优化需要关注延迟控制、带宽扩展和通信协议选择。数据存储解决方案则需根据数据类型选择对象存储/文件系统/数据库,并合理运用数

2025-06-11 23:30:00 1557 4

原创 四大LLM 微调开源工具包深度解析

本文介绍了四种开源工具包,帮助企业高效微调大语言模型(LLM)。Unsloth显著降低显存占用,使单GPU微调13B参数模型成为可能;DeepSpeed实现大规模分布式训练,支持70B参数的超大模型;vLLM优化推理效率,吞吐量提升2-4倍;Axolotl简化微调流程,支持多种高效技术。这些工具共同解决了企业面临的计算资源有限、高风险领域需求和快速迭代周期等挑战,使生产级LLM微调变得实用且高效。通过合理组合这些工具,企业可在普通硬件上实现专业级的模型定制,获得竞争优势

2025-06-11 18:24:10 1654 6

原创 理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

文章重点演示了如何使用 Ollama(运行本地 LLM)、LangChain-MCP 适配器和 Python 构建一个本地化、注重隐私的 MCP 客户端。该客户端通过 LangChain 智能体与 MCP 服务器(使用 FastMCP 实现)交互,调用在服务器端定义的工具(如添加、读取 SQLite 数据库记录)。文中详细展示了服务器和客户端的代码实现、工作流程和交互日志,突显了这种方法的模块化、可扩展性和用户友好性。展示了如何利用 MCP 和开源工具构建一个能在本地安全运行、通过自然语言操作外部系统的ai

2025-06-10 20:00:00 2245 1

原创 AI Agents系列之构建多智能体系统

本文介绍了智能体的核心组件(模型、工具、指令)及设计原则,重点探讨如何选择适合不同任务的模型、设计工具集及编写清晰指令。文章提出三种工具类型(基础、检索、执行)和四种编排模式(管理器、监督者、去中心化、群体),并以监督者模式为例展示多智能体协同的实现方法。关键建议包括优先自动化复杂决策/非结构化数据场景,通过原型测试确定最优模型,以及保持工具的模块化和可组合性。

2025-06-10 08:16:17 1003

原创 使用LangGraph和LangSmith构建多智能体人工智能系统

本文介绍了构建多智能体AI系统的关键步骤,重点探讨了如何通过LangGraph和LangSmith工具创建具备短期记忆和长期记忆能力的智能客服系统。文章首先讲解了环境设置、LangSmith的调试监控作用,以及使用Chinook音乐数据库作为测试数据集的方法。随后,作者详细阐述了智能体的记忆机制设计,对比了短期对话记忆(MemorySaver)和长期用户偏好记忆(InMemoryStore)的差异,为构建可进行上下文感知交互的多智能体系统奠定了基础。所有实现代码和理论说明均以Jupyter Notebook

2025-06-09 19:40:50 1298 2

原创 【阅读笔记】MemOS: 大语言模型内存增强生成操作系统

MEMOS:面向大语言模型的内存操作系统 研究提出MEMOS系统,通过统一管理参数化、激活和纯文本三类内存,解决当前大语言模型在长期知识管理方面的局限性。创新性地引入MemCube作为标准化内存单元,支持跨类型调度和生命周期管理。采用三层架构设计,包含接口层、操作层和基础设施层,实现对内存的统一治理。该系统显著提升了模型在长期对话状态维护、知识演化和多代理协作等方面的能力,为构建更智能、持续学习的大语言模型提供了新思路。未来将探索跨模型内存共享和自演化内存机制。

2025-06-09 17:40:16 1520 1

原创 如何打造一款金融推理工具Financial Reasoning Workflow:WebUI+Ollama+Fin-R1+MCP/RAG

本文探讨了结合金融专用大语言模型(Fin-R1)与金融工具链的金融推理解决方案。通过测试多个主流大模型对5年期10万加元贷款的计算结果,发现不同模型的准确性存在差异,其中Fin-R1和Phi4模型表现较好。文章介绍了在本地部署该方案的技术栈,包括Ollama、OpenWebUI、LightRAG等组件,并展示了Fin-R1在财务报告分析中的应用实例。该方案通过整合专业金融模型、计算工具和知识库,旨在提高金融推理任务的准确性和可靠性。

2025-06-07 00:15:00 1929 7

原创 基于智能代理人工智能(Agentic AI)对冲基金模拟系统:模范巴菲特、凯西·伍德的投资策略

一个由AI驱动的对冲基金模拟系统,能够通过模仿顶尖投资者的投资风格来生成交易信号。系统包含两种类型的人工智能体:(1) 个性化风格智能体(如巴菲特、凯西·伍德等7种投资风格)和(2) 技术任务智能体(包括估值、情绪、基本面等6项专项分析)。用户输入股票代码后,系统会调用Financial Datasets API获取真实财务数据,通过大语言模型(支持OpenAI、Google、Grok等供应商)进行分析,最终输出包含交易信号(买入/卖出、数量和置信度的决策报告。项目测试显示,不同风格智能体对同一股票可能给出

2025-06-06 02:15:00 1922 5

原创 NL2SQL技术新的解决方案SQL-R1:强化学习与监督微调的结合,显著提升了自然语言到SQL推理模型的性能和可解释性

摘要:论文《SQL-R1: Training Natural Language to SQL Reasoning Model By Reinforcement Learning》提出了一种基于强化学习的文本到SQL推理模型SQL-R1。该模型采用监督微调(SFT)和组相对策略优化(GRPO)两阶段训练,设计了格式、执行、结果和长度四层奖励机制。实验表明,SQL-R1在Spider和BIRD基准测试中分别达到88.6%和66.6%的执行准确率,显著优于传统方法。研究创新性地证明了强化学习在提升NL2SQL任务

2025-06-06 00:30:00 1347 4

原创 MCP与检索增强生成(RAG):AI应用的强大组合

模型上下文协议(MCP)和检索增强生成(RAG)是两项互补的人工智能技术,分别适用于不同场景。MCP作为标准化通信协议,适合处理结构化、静态的上下文信息,如公司规则和用户偏好;而RAG则擅长处理大规模动态数据,如知识库和实时信息。二者结合可实现更全面的人工智能解决方案:MCP提供实时数据接口,RAG确保知识准确性。技术实现上可采用LangChain协调组件,结合向量数据库和API集成。这种协同方案既能减少AI幻觉,又能提高响应效率,但也面临延迟和集成复杂度

2025-06-05 00:15:00 944 1

原创 Legal Query RAG(LQ-RAG):一种新的RAG框架用以减少RAG在法律领域的幻觉

人工智能正在变革法律行业,但通用大模型在法律文本处理中存在严重"幻觉"问题,虚构案例发生率高达58%-82%。为此,研究人员开发了LQ-RAG框架,采用双层级架构:微调层通过法律语料库训练嵌入和生成模型,构建领域专业知识;RAG层整合检索增强生成与递归反馈机制,通过评估代理确保响应的相关性、准确性和事实依据性。测试显示,微调后的嵌入模型性能提升13-15%,有效缓解了法律AI的幻觉问题。该系统为法律专业人士提供了更可靠的智能辅助工具。

2025-06-05 00:15:00 1176 5

原创 RAG-Gym:一个用于优化带过程监督的代理型RAG的统一框架

本文提出RAG-Gym框架,通过过程监督增强代理型RAG系统的信息检索能力。该框架将问答任务建模为嵌套MDP,引入三种过程监督方法(SFT、DPO、PRM)优化代理。研究提出的ReSearch代理创新性地整合推理与搜索,在多个基准测试中取得最优性能(平均EM 54.31%,F1 62.41%)。实验表明:1)过程监督显著提升性能(最高25.6%);2)GPT-4标注的奖励模型与人类偏好高度一致(85.85%);3)性能随训练/推理资源增加而提升。该工作为复杂知识检索任务提供了有效的自适应解决方案。

2025-06-04 20:00:00 1148

原创 MCPO:使用MCP工具为Open-WebUI/Ollama助力

Open WebUI 现已正式支持 MCP Tool 服务器,通过兼容 OpenAPI 的代理实现(MCPO)实现连接。MCPO 作为中间代理,将 MCP 服务器命令转换为 RESTful API,简化了工具与大语言模型的集成。文章详细介绍了配置流程:安装 MCPO 服务器、设置多个 MCP 服务实例,以及在 Open-WebUI 中添加工具端点。此外,还演示了如何创建新的 MCP 服务器(如关税新闻反应查询工具),包括代码生成、测试和集成步骤。该方案为开发者提供了便捷的 AI 工具连接方案,支持 stdi

2025-06-04 09:46:33 2076 4

原创 探索注意力模型中的经典位置嵌入

本文探讨了Transformer模型中位置嵌入的不同方法。首先介绍了绝对位置嵌入,如原始Transformer论文中的正弦波编码。然后重点分析了相对位置嵌入的多种实现方式,包括可训练嵌入、Transformer-XL的混合方法,以及DeBERTa的简洁交叉项设计。文章通过图示和公式对比了这些技术的核心思想,强调相对位置嵌入通过标记间距离关系来提升模型性能。不同方法各具特色,从复杂组合到精简设计,反映了研究者对位置信息处理的持续优化。位置嵌入作为注意力模型的关键组件,其发展直接影响模型对序列数据的理解能力。

2025-06-04 00:45:00 1493 1

原创 详解代理型RAG与MCP服务器集成

代理型RAG通过引入AI代理优化传统检索增强生成技术,实现动态多步骤检索与跨工具协作。其核心组件包括路由代理、查询规划代理、ReAct代理及计划执行代理,分别承担智能调度、任务分解、自适应执行和自主决策功能。模型上下文协议(MCP)作为关键基础设施,标准化AI与外部数据源的交互,通过MCP服务器实现长期记忆存储和工具集成。典型架构中,代理通过MCP客户端协调多知识源检索,结合LLM生成更精准的响应。这种结合显著提升了系统的灵活性、适应性和准确性,推动RAG向主动式智能问题解决范式演进。

2025-06-03 09:01:43 205 3

DeepSeek高效使用技巧:职场、学术、自媒体的内容生成与问题求解利器

内容概要:文章探讨了深受欢迎的AI工具DeepSeek的有效利用方法。文中指出多数使用者未能发挥其最大价值主要是由于不当提问导致的非有效回应。为此,本文通过实例展示了一个简化的但极为有效的“4步提问法”,该方法包括明确提问者的身份背景、设定具体的任务内容、加入必要的细节约束以及指定所需的输出格式。对于不同的群体,如职场白领制作报告或PPT、大学生进行文献查阅或优化论文,乃至网络自媒体工作者撰写个性化博客或推广文案等方面,给出了详尽的应用指导,并强调了如何根据应用场景调整询问方式从而获得最佳效果。 适用人群:适用于想要改善与优化自身工作效率,或是寻求更优质的学术研究支持,亦或是期望通过网络媒体创作吸引观众并增强影响力的各界人士。 使用场景及目标:无论是为了在工作场合中展现专业的数据分析、报告制作等技能;还是为了帮助学生快速准确地搜索相关资料并且有效避免学术不端行为(如查重率过高),又或者是为个人或品牌的自媒体平台创造出更具创意性、话题性的高质量文章,此文中介绍的方法都能极大地提升使用者对DeepSeek这一强大工具的认知度及其实际应用效能。 其他说明:值得注意的一点在于,当使用该公式式的

2025-03-01

DeepSeek内部科普材料

DeepSeek内部科普材料旨在向用户和相关人员介绍DeepSeek的技术背景、功能特点及使用案例等。

2025-03-01

语音对话大模型及其基准测试的全面综述与最新进展

内容概要:本文档对语音对话大模型进行了系统性的总结,涵盖了最新的研究论文和技术资源。首先介绍了通用音频、语音和音乐理解模型(如LTU、SALMONN等)的研究成果,并讨论了联合音频和语音理解的进展。接下来探讨了几项重要的端到端语音对话系统模型(如SpeechGPT、VITA、Moshi等),并对其核心技术进行了详细解析。文档还涉及了多项基准测试(Benchmark)工具,如AIR-Bench、SD-Eval、AudioBench等,为评估模型性能提供了参考依据。最后,文档介绍了全双工建模技术,旨在实现实时对话系统(例如MiniCPM-duplex、SyncLLM)。此外,还包括两份关于语音语言模型近期发展的综述性文献。 适用人群:从事自然语言处理、语音识别、人机交互以及深度学习领域的研究人员、学生或相关从业者。 使用场景及目标:适用于希望深入了解语音对话大模型架构、算法改进及实际应用效果的专业人士。帮助读者获取当前最前沿的技术资料,指导未来研究方向。 其他说明:此文档汇集了大量高影响力的会议论文和技术报告链接,便于进一步深入学习和探索相关领域知识。同时列出了一些开源项目地址,方便感兴趣

2025-03-01

推理模型构建:四种主要方法和技术进展综述

内容概要:本文全面解析了构建和改进推理模型(推理能力增强的大规模语言模型,LLM)的四种主要方法:推理时间扩展、纯强化学习(RL)、监督微调加强化学习(SFT + RL),以及纯监督微调和蒸馏(Distillation)。文中介绍了 DeepSeek团队通过这几种方法开发出的多个模型,特别是在不同应用场景和预算条件下的实践效果。文中不仅讲解了各个技术的优势与局限,还包括对模型训练成本、开发难度、效率等方面的专业讨论。 适合人群:对自然语言处理、推理模型构建感兴趣的科研工作者、工程师及研究生。 使用场景及目标:①帮助研究者掌握不同类型推理模型的特点和优劣,从而选择最适合的应用方法;②引导开发者根据自身条件制定高效合理的建模计划,尤其是面对复杂问题或有限预算时;③为有兴趣了解前沿AI技术和模型架构的学习者提供有价值的参考资料。 其他说明:本文提供了丰富的实例和技术细节,涵盖了目前主流的技术手段和发展方向。同时也对比了几款知名推理模型,如 DeepSeek-R1和疑似 OpenAI的 o1,并对未来发展趋势提出了预测。作者希望通过此文激发更多关于低成本高质效推理模型的研发思路。

2025-03-10

智能投标领域的星火投标平台-利用大模型技术提高编标效率与标书质量的应用指南

内容概要:本文介绍了一款面向投标的专业工具——星火投标。该平台依托星火大模型技术,实现了从投标所需的各种资信材料自动化解析到通过知识图谱生成投标方案的一站式解决方案,涵盖高精度投标文件创作、以及自动检测和纠正标书中潜在缺陷的功能,以此提升编标工作的速度和精准度,最终增加企业的中标几率。特别适用于建筑、能源、制造等多个行业的工程项目招投标工作中。 适合人群:参与各类大型复杂投标项目的从业人员及其负责团队,包括但不限于项目管理人员、合同专家和其他需要准备高质量标书的专业人士。 使用场景及目标:该软件能够帮助客户在短时间内高质量地完成标书制作任务。它可以自动分析以往的成功案例及相关文档资料来辅助新的标书创建工作,确保新文档与既往成功的投标保持连贯性和专业水平;另外它还具备智能化检查功能,用来发现可能存在的错误点并及时给出改进意见。 其他说明:星火投标平台的具体操作方法非常友好简单,在官网提供的详细指导下,即使是初学者也能迅速上手,并且提供了多途径客服支持选项以确保用户体验流畅无阻。

2025-03-10

自然语言处理技术在金融资管领域的落地实践

自然语言处理技术在金融资管领域的落地实践

2025-03-11

区块链应用与测试:涵盖用户注册页面测试、文档分类及应用部署

内容概要:本文详细介绍了区块链应用的不同方面,其中包括了针对一个即将开发的用户论坛进行的用户注册页面测试,明确了测试设计的具体要求和答案,如用户名有效和无效等价类的界定。接下来是对各种开发文档(开发计划、需求说明书)、产品文档(产品手册、用户指南)及管理文档(进度记录)的分类,以及如何运用 Git 版本控制工具协同编辑文档。此外,还讲述了区块链系统的单节点区块验证过程,包括五个具体的检查点(时间戳、随机数、哈希值、链链接和交易有效性),并且提供了一个简单的 Flask Web 服务器构建示例和区块链系统交易对象属性解释,如发送方和接收方地址及其数字签名等内容。 适合人群:对于想要深入了解区块链测试方法、Git 操作、区块链应用程序开发,尤其是关注用户注册页面测试和单节点区块链系统区块验证的技术人员和学生而言非常有用。 使用场景及目标:旨在帮助读者掌握用户界面功能验证的方法论,提高区块链应用程序的安全性和稳定性。同时让开发者更好地管理多份技术文档,优化项目的开发流程,并能够初步了解 Flask 框架的应用。最后,为深入研究区块链系统底层架构提供了基础理论和实践指引。 其他说明:文档

2025-03-11

智慧政策系统的多功能综合应用及其实现方案-聚焦文件解析、知识图谱和智能问答

内容概要:本文介绍了智慧政策系统的总体架构及其具体模块功能。它是一个涵盖政策信息查询、自动测评及反馈、智能化处理与分析等多方面的集成平台。尤其针对当前政务信息化改革的需求,系统利用前沿的大数据、自然语言处理(NLP)等AI技术支持,如通过paddleOCR、Layoutreader等技术处理各类公文;同时运用文本解析、关键字提取等方式整理并归类相关信息建立知识库;借助向量化索引提高搜索性能,并通过实体及联系建立知识图谱以便用户更好地理解和利用数据。此外还提供了基于LLM的语言模型问答服务以及企业专属财税福利计算器等功能。最终实现了高效、全面的服务政府机关到民间团体乃至个人的目标。 适合人群:政府官员、政策研究专家、企业和机构决策者、技术人员和其他希望了解如何运用先进技术优化公共信息服务的相关从业者。 使用场景及目标:本系统适用于需要获取最新最全政策动向的单位和个人,在面对复杂繁琐的官方文书时希望能够得到便捷有效的指引和支持的人群尤为适用。其主要目的在于打破信息孤岛,增强政令传达效率的同时也让受益群体更容易享受到应有的权益保护和服务质量。 其他说明:文中特别强调了对政策内容深入分析和技术

2025-03-03

DeepSeek15天指导手册

DeepSeek15天指导手册

2025-02-14

DeepSeek如何赋能职场应用?从提示语技巧到多场景应用-清华大学

DeepSeek如何赋能职场应用?从提示语技巧到多场景应用-清华大学

2025-02-14

DeepSeek从入门到精通-清华大学-202502

DeepSeek从入门到精通-清华大学-202502

2025-02-14

OpenAI官方文档《提升推理能力的最佳实践》

OpenAI官方文档《提升推理能力的最佳实践》

2025-02-14

pyltp安装wheel文件

完美解决python3.6安装pyltp出现的各类错误,各类vs错误,编译错误均可完美解决

2018-08-23

自适应确定DBSCAN算法参数的算法研究_李文杰.pdf

传统DBSCAN算法需要人为确定Eps和MinPts参数,参数的选择直接决定了聚类结果的合理性,因此提出一种新的自适应确定DBSCAN算法参数算法,该算法基于参数寻优策略,通过利用数据集自身分布特性生成候选Eps和MinPts参数,自动寻找聚类结果的簇数变化稳定区间,并将该区间中密度阈值最少时所对应的Eps和MinPts参数作为最优参数。实验结果表明,该算法能够实现聚类过程的全自动化并且能够选择合理的Eps和MinPts参数,得到了高准确度聚类结果。

2020-04-02

税务数据挖掘论文

有关税务税局挖掘的论文 包含逻辑回归 svm som、在税务稽查方面的应用 ,该资料包下载自知网,论文大部分是硕士论文及期刊论文 打开请用知网caj阅读器

2017-09-27

文本挖掘技术——北大杨建武教授

教授的文本挖掘技术课程ppt 包含文本情感分析 特征提取

2018-06-28

入门深度学习--探秘lstm

一次部门内部分享的PPT

2021-01-06

数据挖掘与机器学习 WEKA应用技术与实践 完整版

详细讲解weka,机器学习算法 书籍完整版 推荐下载 作者:袁梅宇出版社:清华大学出版社出版时间:2014年07月

2017-09-28

机器学习实战 英文版

MachineLearning机器学习实战 英文版 机器学习 大数据 深度学习 人工智能

2017-10-23

【人工智能项目实践】周末可构建的30个AI项目全解析:从基础数据处理到高级模型微调

内容概要:本文提供了30个AI项目的想法,分为三个层次(初学者、中级、高级),涵盖从数据分析管道到机器学习模型训练再到大型语言模型(LLM)的提示工程、检索增强生成(RAG)、嵌入以及微调等多个方面。每个项目都配有详细的步骤说明和额外资源链接,帮助读者从零开始构建项目。文章还列出了常用的Python库列表,如pandas、scikit-learn、transformers等,并介绍了如何利用这些工具进行数据处理、模型训练和评估。 适合人群:适用于希望提升AI技能的技术爱好者和从业者,特别是那些刚开始接触AI领域的人士。 使用场景及目标:①初学者可以通过构建简单的数据分析仪表板或简历解析器来熟悉Python编程和基本的数据处理技术;②中级用户可以尝试机器学习项目,如客户流失预测、情感分析、信用卡欺诈检测等,学习特征工程、模型选择与评估;③高级用户则可以通过提示工程、RAG、多模态搜索和模型微调等项目深入探索LLM的应用,解决实际业务问题。 其他说明:本文不仅提供项目思路,还强调了实践的重要性。读者应结合提供的资源,逐步完成每个项目的开发,并在过程中不断调整优化。此外,文中提到的AI Builders Cohort项目为有兴趣深入学习AI的读者提供了一个为期六周的培训计划,帮助他们构建实际的AI解决方案。

2025-05-26

python源代码详解检索增强生成(20+RAG技术复现)

采用系统化且实用的方法对**检索增强生成(RAG)**进行讲解,将复杂的高级技术分解为易于理解的实现步骤。该实现并未依赖诸如 `LangChain` 或 `FAISS` 等专用框架,而是完全基于常见的 Python 库(如 `openai`、`numpy` 和 `matplotlib` 等)构建。其目标明确:提供简洁、清晰且易于阅读、修改与学习的代码示例。通过聚焦于基础原理,该项目有效降低了 RAG 技术的理解门槛,帮助用户深入掌握其工作机制。

2025-04-14

基于langchain/llamaindex的20多种RAG技术实现

一个全面的检索增强生成(RAG)实现集合,基于两大流行的AI框架LangChain和LlamaIndex,提供了20多种不同的RAG实现方案。这些实现覆盖了从基础到高级的各种RAG应用场景,旨在为开发者和研究人员提供丰富的参考和即用解决方案。 ## 核心特点 - **多样化的实现方案**:包含20多种不同架构和配置的RAG实现 - **双框架支持**:同时基于LangChain和LlamaIndex两大AI框架 - **模块化设计**:每个实现都是独立的,可轻松集成到现有项目中 - **场景覆盖全面**:从简单文档问答到复杂多模态检索应有尽有 - **最佳实践集成**:融合了RAG领域的最新研究成果和工程实践 ## 技术栈 - **核心框架**:LangChain, LlamaIndex - **语言模型**:支持多种LLM(如GPT, Claude, LLaMA等) - **向量数据库**:Pinecone, Weaviate, FAISS, Chroma等 - **数据处理**:多种文档加载器和文本分割策略 - **高级特性**:查询改写、重排序、混合搜索等 ## 适用场景 本项目适合: - 希望快速实现RAG功能的开发者 - 需要比较不同RAG架构效果的研究人员 - 想要学习RAG最佳实践的学生和爱好者 - 为企业应用评估RAG解决方案的技术决策者 ## 项目结构 每个实现为一个独立的md文件包含完整的代码、配置说明,让您可以快速运行和测试不同方案的效果。我们提供了详细的文档说明每种实现的优缺点和适用场景。 通过这个项目,您将获得关于如何构建高效、可靠的RAG系统的全面知识,并能够根据具体需求选择最适合的实现方案。

2025-04-22

可视化详解与实战实现Corrective RAG代理工作流​

基于llama_index实现自我纠正RAG

2025-04-15

DATA SCIENCE PDF 数据科学 PDF

数据科学 PDF(530 多页),其中包含 150 多个核心数据科学/机器学习课程。

2025-04-14

langchain RAG from scratch

从零基础开始使用 LangChain 实现检索增强生成(RAG)的课程

2025-04-14

大型语言模型、预训练模型与嵌入模型的选型指南及应用场景解析

内容概要:本文详细介绍了大型语言模型(LLMs)、预训练模型和嵌入模型的区别及其各自的应用场景。首先阐述了三者的特性和优势,接着讨论了它们在不同任务中的适用性,如对话系统、文本分类和聚类等。文中通过对比性能指标、资源需求、可扩展性和定制能力,帮助读者理解如何根据具体需求选择最优模型。最后,通过三个真实的案例研究展示了不同类型模型的成功应用,进一步明确了各自的优劣。 适合人群:从事自然语言处理(NLP)及相关领域工作的研究人员和技术人员,尤其是需要选择和部署AI模型的从业者。 使用场景及目标:①帮助读者理解大型语言模型、预训练模型和嵌入模型的特点;②指导读者根据任务复杂性、资源限制等因素选择合适的模型;③提供具体的实施步骤和代码示例,便于实际操作。 其他说明:文章不仅涵盖了理论层面的知识,还包括了实际应用中的经验分享和技术实现的具体方法,是一份兼具深度和广度的参考资料。

2025-04-01

基于单元格分割OCR及插图检测的表格识别算法

基于单元格分割OCR及插图检测的表格识别算法

2025-03-24

基于Label Studio的文档标注方法及应用场景

内容概要:本文档详细介绍了利用 Label Studio 进行文档标注的具体流程与配置方法。主要包括系统环境搭建与Label Studio安装指引,随后依次讲述了从项目创建、数据加载直至数据导出及格式转换等步骤的操作指南,并深入探讨了实体、关系抽取与文档分类等多种任务类型的设置与执行。此外还提供了额外配置选项以供灵活调整任务细节。 适合人群:从事机器学习相关工作的专业人士,尤其侧重于信息提取与自然语言处理的应用开发人员和技术爱好者。 使用场景及目标:帮助开发者掌握高效、精确地准备用于训练深度学习模型所需的数据集的技术能力。能够支持诸如金融票据、法律文件以及其他结构化文本资料中的重要元素识别等工作需求。 其他说明:文中涉及大量实战案例展示,附带源码片段便于理解和操作演示。强调了合理的负样例构造对于提高特定类型AI模型性能的作用,并提供了关于比例分配等方面实用建议。

2025-03-25

图数据库基准测试:TigerGraph与其他图数据库的性能对比及优势解析

内容概要:本文档详细评估了 TigerGraph 与其他图数据库(如 Neo4j、Amazon Neptune、JanusGraph 和 ArangoDB)在数据加载和查询性能方面的表现。测试环境使用相同的 Amazon EC2 硬件平台,并通过加载和查询两个不同规模的数据集(Graph500 和 Twitter 用户跟随关系图)来衡量性能。测试内容包括数据加载时间和效率、加载后的磁盘存储空间、单节点及分布式环境中各种复杂图遍历查询的响应时间。结果显示,TigerGraph 在各个方面表现出显著优越的性能,尤其是在大规模并行处理和存储效率方面。 适用人群:从事图数据库及其应用的开发人员、研究人员及技术决策者。 使用场景及目标:通过具体的性能数据和实际用例,为图数据库的选择和技术选型提供参考依据,特别是对于需要高效处理大量关系数据的应用场景。 其他说明:所有测试代码及相关配置均可在官方 GitHub 页面获取,方便重现。文中提到 TigerGraph 在欺诈检测、医疗保健等多个行业的应用场景,突显其广泛的商业价值。

2025-03-25

RAG学习RL测试数据集

RAG 测试pdf文件,配套《动手实现各类RAG》专栏,不借助任何RAG现成框架,徒手撸python实现各类RAG功能、增强技术等https://blog.csdn.net/qq_36603091/category_12923460.html?spm=1001.2014.3001.5482

2025-03-25

企业AIGC商业落地应用解析:技术进步引领企业服务创新与优化

内容概要:本文聚焦于生成式人工智能(AIGC)技术的发展及其在企业层面的应用前景。首先阐述了AIGC的核心概念及对其市场全貌的认识,探讨了各类服务商的角色和选择依据,并分析了AIGC可能改变的传统场景及新模式。文中指出,AIGC不仅革新了市场营销手段,还在客服、办公自动化等多个领域提供了新的解决方案。尤其值得注意的是,它能够在降低成本的同时提升用户体验,并通过深度集成进入企业的现有数字架构,实现快速高效的业务转型。 适合人群:对AIGC感兴趣的企业管理者和技术从业者,特别是那些希望借助先进AI技术推动业务增长或改进内部运作效率的人士。 使用场景及目标:文章适用于希望理解AIGC如何帮助企业应对挑战并抓住机遇的情境。通过了解具体的实施案例,如营销内容自动化、客户服务智能化等,可以使企业找到适合自己情况的应用切入点,促进创新发展。此外,文章还有助于制定合理的投资策略,评估采用AIGC所带来的潜在收益。 其他说明:本文还涉及不同类型的收费模式对中小型和大型企业在应用时的选择启示,强调数据安全性和系统兼容性为两大重点考量因素。为了最大化发挥AIGC的作用,建议企业培养相关技术团队并重视长远规划

2025-03-24

RAG技术体系全解析:发展脉络、框架演进与增强技术

算法部门内部RAG学习交流分享

2025-03-23

RAG 测试pdf文件,配套《动手实现各类RAG》专栏,不借助任何RAG现成框架,徒手撸python实现各类RAG功能、增强技术等

RAG 测试pdf文件,配套《动手实现各类RAG》专栏,不借助任何RAG现成框架,徒手撸python实现各类RAG功能、增强技术等https://blog.csdn.net/qq_36603091/category_12923460.html?spm=1001.2014.3001.5482

2025-03-20

基于Label Studio的文本标注工具及其实现自然语言处理任务的操作手册

内容概要:本文档提供了利用Label Studio进行文本标注的具体操作步骤,涵盖了安装配置方法、多种标注类型的创建、数据准备、标注过程以及最后数据导出和转换。重点阐述了不同任务,比如命名实体识别、关系抽取、事件抽取、文本分类、句子女情感分类以及实体/评价维度分类的实现方法。并且深入解析了这些自然语言处理(NLP)应用过程中的一些注意事项和技术细节,尤其是关于prompt构造的原则及其如何影响模型性能。 适合人群:从事自然语言处理领域的研究人员、工程师和相关专业学生,以及希望借助Label Studio开展高质量语料加工的技术团队。 使用场景及目标:该文档主要用于指导如何快速有效地建立起自己的文本标注平台来支持下游机器学习项目的推进;确保用户可以独立完成整个流程,从而为模型训练提供高质量的数据资源。同时,帮助开发者更好地理解UIE框架的需求并优化标注方案。 其他说明:本文档不仅介绍了一般性的操作步骤,还针对特定的配置选项给予了详细的解释,使得即便是初次接触Label Studio或者PaddlePaddle平台的新手也能顺利地执行各种复杂的文本标注任务。它强调了一些关键点如合理的提示词

2025-03-12

面向统一端到端模型的下一代光学字符识别理论与GOT-OCR-2.0模型解析

内容概要:本文介绍了一种全新的光学字符识别(OCR)系统——OCR-2.0及其代表性模型GOT。传统的OCR系统由于模块化的复杂流程导致高昂维护成本和低效的文本感知能力。GOT模型拥有5.8亿参数,集成了高效压缩编码器与长上下文解码器,在处理多类型的文本识别上具有优越性能,支持常见图像类型和复杂的任务如乐谱、化学公式、图表、甚至几何图形。它还支持动态分辨率以及多页OCR,并能在高交互性和特定区域识别上表现出色。作者通过对不同模型的对比实验展示了该模型的有效性和实用性。 适用人群:对OCR研究和应用感兴趣的学术研究人员、从事文字识别领域的软件开发者和技术爱好者。 使用场景及目标:主要适用于科研论文转换成PDF文档、文献档案数字化、表格公式的结构化抽取等各种场景中的高质量文字识别需求。此外还包括需要高级OCR特性的场景比如细粒度文档理解、图表提取、以及批量PDF处理等方面。 其他说明:文章强调了OCR的发展方向是从传统单一功能向更加综合全面的方向转变,并提出了未来工作的改进建议,例如支持更多语种及其他特殊字符形态。同时提供大量详实的数据来源说明和实验结果比较,论证了所提出方法的优势。

2025-03-13

从零构建RAG-基于提示连接检索增强生成与LLM的技术解析及应用场景

内容概要:本文作者 Lance Martin 是来自 LangChain 公司的软件工程师。文档首先解释了RAG(Retrieval-Augmented Generation,检索增强生成)的动机,即通过引入文档资料到LLM的语境窗口来提升机器理解和作答复杂度的能力。之后深入浅出地介绍了如何利用prompt将文档搜索检索系统与大型语言模型(LLMs)进行链接,并附有实例网站参考资料供读者进一步学习。最后,文中提供了详细的代码演示,有助于理解整个过程的实际运作方法。 适合人群:对AI对话系统有兴趣并具有一定程序背景的开发者和技术爱好者。 使用场景及目标:帮助研究者和技术工作者更好地掌握RAG技术及其具体实施手段,提高问答系统的精度和服务质量。 阅读建议:本材料旨在引导读者理解从无到有创建RAG的基本概念以及操作流程,在实践的同时可以参阅提供的案例网站链接来加深对RAG的理解。同时也可以跟着代码讲解进行实际编码尝试,体验LLM驱动的应用开发魅力。

2025-03-11

使用DeepSeek进行高效学习、工作与旅行规划的经验与技巧详解

内容概要:本文详细讲述了用户如何借助AI助手DeepSeek进行高效的学习、工作和娱乐活动,包括为幼儿制定全英语教育课程,设计系统的西班牙语学习计划以及规划一次安全舒适的西班牙旅行,涵盖了使用和提问的具体策略和心得分享。DeepSeek不仅展示了强大的逻辑思考和推理能力,而且其出色的结构化表达和针对性强的答案让人赞叹。文中列举了大量的实际案例和应用场景,突显了该工具的强大功能性。 适合人群:想要提升自身效率的上班族、正在学习新的语言和技术的学生,以及有兴趣深入了解如何有效利用AI进行日常生活的规划与优化的人群。 使用场景及目标:适用于各类涉及学习新知识、项目策划、个人发展等方面的需求。尤其当您希望通过有效的沟通方式获取更高质量的回答,并且希望通过实践来不断提升自己时,DeepSeek 是非常好的工具。 其他说明:值得注意的是,为了得到最好的交互体验,用户应当提供足够的背景信息和明确的需求描述;对于不确定的部分持续追问也能进一步获得更加详尽的帮助。总之,本文旨在通过具体的应用案例帮助读者更好地理解和运用DeepSeek。

2025-03-11

招标投文本NER/REL数据集-中标单位与金额解析及其关联信息整理

内容概要:本文提供了大量的招标投标相关数据片段,涵盖的内容广泛,主要包括了各种类型的项目如工程类、设备采购、服务外包等。这些数据片段详尽展示了不同中标单位、金额及对应的关系。例如,在中标情况方面有多个中标单位的具体名称及各自对应的金额。此外还有对特定项目的开标时间和地点、合同签订和公示截止日期、预算金额和工程建设地点等一系列具体参数的数据记录。所有中标信息都明确了各单位中标的产品或项目、中标金额和关联单位地址等重要细节。 适用人群:本文适合于需要掌握详细项目运作情况的专业人士,包括但不限于参与政府、企事业单位采购部门工作人员以及招投标领域的研究人员或从事审计监察工作的相关人员。 使用场景及目标:本文可用于了解某个特定地区或某项业务领域的市场竞标动态及趋势走向;对于想了解某行业市场参与者竞争态势的人群而言非常有用;同时还可以用于学习如何解读官方发布的招投标结果通告,以作为实际工作参考。 其他说明:文中包含了大量的实际项目实例,这有助于读者更加直观地理解和分析各类信息之间的关系。此外还提供了完整的数据链以便追溯每一个中标背后的详细流程与规定。通过对这些数据的学习可以提升用户对该领域的认知水

2025-03-17

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除