- 博客(320)
- 资源 (8)
- 收藏
- 关注

原创 MCTS-RAG:通过树搜索重塑小模型中的检索增强生成(RAG)
MCTS-RAG框架的核心思想是在推理过程中动态结合检索操作,探索多个推理路径,并在关键决策点评估中间状态。具体来说,框架在每个MCTS决策点设计了六种离散动作,包括直接回答、快速推理、分解问题、检索推理、检索分解和总结回答。这些动作帮助模型在推理过程中灵活地结合外部知识,从而提高准确性
2025-05-22 00:45:00
1484
63

原创 从零开始用Python构建一个推理LLM(类似 o3 和 DeepSeek-R1):详细的端到端指南
本文介绍了如何从零开始使用 Python 创建一个 200 万参数的推理型语言模型(LLM),并逐步通过预训练、有监督微调(SFT)和基于人类反馈的强化学习(RLHF)三个阶段赋予其推理能力。作者详细展示了如何训练分词器、构建 Transformer 模型、设计数据集加载器,并通过代码示例和训练循环展示了每个阶段的实现过程。最终,模型能够生成包含“思考”和“回答”标签的推理式回答,尽管在小数据集上表现有限,但在更大数据集上训练时表现出了较好的推理能力。
2025-05-21 02:45:00
1678
35

原创 RAG-MCP:通过检索增强生成缓解大型语言模型工具选择中的提示膨胀问题
RAG-MCP框架通过结合检索增强生成(RAG)原则和MCP框架,解决了LLMs在外部工具选择中的提示膨胀和决策复杂性问题。该框架的核心是语义检索模块,它将工具元数据表示为向量空间中的点,并高效匹配用户查询与最相关的工具,从而减少提示大小和复杂性,提高决策准确性。MCP压力测试表明,随着工具数量的增加,传统方法面临提示膨胀和决策开销问题,而RAG-MCP通过动态检索最相关的工具,显著提高了选择准确性和系统可扩展性。实验结果显示,RAG-MCP在选择准确性、提示令牌使用和任务成功率方面优于基线方法。然而,该方
2025-05-19 01:15:00
2736
16

原创 Qwen-3 微调实战:用 Python 和 Unsloth 打造专属 AI 模型
本文详细介绍了如何利用 Python 和 Unsloth 对 Qwen-3 模型进行微调,以打造专属的 AI 模型。文章首先强调了 Qwen-3 在各项基准测试中的出色表现,随后详细阐述了微调所需的 Python 库、计算资源以及数据准备策略。接着,通过具体的代码示例,展示了从模型初始化、添加 LoRA 适配器到数据预处理、模型训练以及推理的全过程。最后,还介绍了如何保存和推送微调后的模型至 Hugging Face Hub,为读者提供了一套完整的实战指南。
2025-05-15 02:00:00
6845
52

原创 测试17种引导AI的提示工程技巧:从零样本到更复杂的ReAct
本文探讨了在1B参数的LLaMA模型上测试17种提示工程技巧的效果,旨在通过优化提示方式提升小型LLM的生成结果。文章首先介绍了提示工程的重要性,强调通过改进提示内容可以引导模型生成更准确、创意或可靠的回答。接着,文章详细描述了如何搭建测试环境,包括加载模型和定义相关函数。随后,文章通过具体示例展示了零样本、少样本和角色提示等技巧的应用。零样本提示适用于简单任务,而少样本提示通过提供示例帮助模型更好地理解复杂任务。角色提示则通过指定模型扮演特定角色来调整回答的风格和内容。这些技巧的测试结果表明,合理使用提示
2025-05-14 20:00:00
2106
26

原创 构建最优的 RAG 检索增强生成系统:为你的数据集找到最优解
本文介绍了如何为数据集创建最佳的RAG(检索增强生成)管道。通过系统性地测试不同的参数组合(如分块大小、重叠度、检索数量)和策略(简单RAG、查询重写、重排),结合忠实度、相关性和语义相似度等评估指标,找出最适合特定数据集的RAG配置。实验结果表明,简单RAG策略在效率和效果上表现最佳。文章还提出了未来可进一步探索的方向,如测试更多模型、优化提示和混合搜索策略等。
2025-05-05 00:30:00
1274
45

原创 详解如何一步步拿下企业年报问答RAG挑战赛冠军
本文揭秘如何斩获企业级RAG挑战赛双料冠军的完整技术方案。面对100份千页PDF年报的极限解析任务,他创新性地组合了GPU加速解析、多级检索路由和LLM重排序等技术:先用改造后的Docling解析器40分钟完成文本提取,再通过"小块定位+整页返回"的检索策略平衡精度与上下文,最后用结构化提示词工程让GPT-4o-mini在2分钟内完成100道题的高精度作答。文章幽默呈现了与PDF格式的搏斗历程,揭示了表格序列化实验的反转结局,并强调冠军方案的核心在于对业务场景的深度理解
2025-04-15 00:00:00
7637
60

原创 详解如何复现DeepSeek R1:从零开始利用Python构建
本文详细介绍了从零开始构建 DeepSeek R1 的过程,涵盖了从基础模型选择、训练数据准备到多阶段训练的完整流程。首先,通过强化学习(RL)和 GRPO 算法训练出 R1 Zero,解决了基础模型的推理能力问题。接着,通过监督式微调(SFT)和冷启动数据,进一步优化模型的推理风格和语言一致性。最后,通过推理导向的强化学习、拒绝采样以及知识蒸馏等技术,不断提升模型的推理质量和实用性,最终得到高效且推理能力强的 DeepSeek R1 模型。整个过程不仅注重技术实现,还通过详细示例和代码,让读者能够清晰地理
2025-04-11 00:00:00
4205
58

原创 详解如何从零用 Python复现类似 GPT-4o 的多模态模型
在这篇博客中,我们从零开始构建了一个多模态模型,能够处理文本、图像、视频和音频,并根据文本提示生成图像。我们首先实现了 BPE 分词器,将文本分解为子词标记。接着,我们构建了一个基于 Transformer 的语言模型,能够生成文本。然后,我们将模型扩展为多模态,通过 ResNet 提取图像特征,并将这些特征与文本结合,使模型能够回答关于图像的问题。我们还展示了如何通过文本提示生成图像特征向量,并找到最接近的已知图像。整个过程不仅展示了多模态模型的强大能力,还揭示了其在实际应用中的潜力。
2025-04-10 00:00:00
15450
109

原创 如何使用 FastAPI 构建 MCP 服务器
哎呀,各位算法界的小伙伴们!今天咱们要聊聊一个超酷的话题——MCP 协议!你可能已经听说了,Anthropic 推出了这个新玩意儿,目的是让 AI 代理和你的应用程序之间的对话变得更顺畅、更清晰。不过别担心,为你的 Python 应用程序搭建一个这样的服务器并不复杂,甚至可以说简单到让你怀疑人生!想象一下,AI 就像你的私人助理,而 MCP 就是它和你家大门之间的钥匙。让 AI 去操心那些繁琐的逻辑吧,咱就负责躺平享受成果。不管你是想连数据库还是接 API,MCP 都能帮你搞定。
2025-03-31 11:20:36
2747
35

原创 使用Python从零开始构建千万级参数的大型语言模型(LLM)
徒手pytho撸出Transformer架构并一步步训练处一个LLM大模型
2025-03-22 00:15:00
1458
10

原创 图解LLM智能体(LLM Agents):构建与运作机制的全面解析
本文深入探讨了大型语言模型(LLM)智能体的构建与运作机制,涵盖其核心组件和多智能体框架。LLM智能体通过外部工具、记忆系统和规划能力弥补了传统LLM的不足,能够执行复杂任务并展示自主行为。文章详细介绍了记忆模块(短期与长期记忆)、工具使用(如Toolformer和MCP协议)以及规划与推理技术(如ReAct和Reflexion)。此外,多智能体系统的协作框架被提出,用于解决单一智能体在工具选择、上下文复杂性和任务专业化上的局限性。生成式智能体(Generative Agents)模拟人类行为的研究展示了多
2025-03-18 13:35:10
2220
5

原创 徒手打造个人AI Agent:基于DeepSeek-R1+websearch从零构建类Manus深度探索智能体AI-Research
该系统能够在预定义的主题上进行深入研究。研究计划:这意味着创建一个研究报告大纲,这将成为系统的最终输出。将上述内容拆分为可管理的步骤。对报告的各个部分进行深入研究。针对推理所需的数据,进行全面的分析,并利用网络搜索工具支持分析。反思研究过程中不同步骤生成的数据,并改进结果。总结检索到的数据,并生成最终的研究报告。今天,我们将实现上述所有步骤,而不使用任何LLM编排框架。首先,我们需要定义整个系统的状态,该状态将在代理运行过程中不断演变,并被系统的不同部分选择性地使用。
2025-03-16 00:15:00
2024
18

原创 【开源+代码解读】Search-R1:基于强化学习的检索增强大语言模型框架3小时即可打造个人AI-search
强化学习驱动检索:首次将RL应用于LLM与搜索引擎的多轮交互,突破传统监督学习限制。轻量化奖励设计:仅用结果奖励即可引导模型学习复杂检索策略。结构化生成框架:通过标记控制生成流程,兼容不同RL算法。
2025-03-13 13:57:02
3246
18

原创 从理解强化学习及其在 LLM 中的作用开始手把手教你构建DeepSeek-R1推理模型
本文深入探讨了强化学习(RL)在大型语言模型(LLM)训练中的应用,特别是通过人类反馈强化学习(RLHF)技术对齐人类偏好。文章重点介绍了组相对策略优化(GRPO)这一创新算法,其通过生成多个响应组、组内归一化优势计算和KL散度约束,显著提升了训练效率和稳定性。此外,本文详细解析了DeepSeek R1模型的四阶段训练流程,展示了其在数学和编程任务中的卓越表现。最后,文章还介绍了如何在TRL库中实现GRPO,并提供了配置参数、奖励函数设计和训练监控指标等实用建议
2025-03-05 01:15:00
1982
12
原创 从零开始,用 MCP 打造真正“会思考”的 RAG 智能体 —— 实战指南 + 源码解析
本文介绍了一种基于Model Context Protocol(MCP)构建的Agentic RAG系统,通过让LLM自主决定检索时机、内容和来源,实现私有知识和实时联网的双引擎协同。相比传统RAG固定查询单一知识库的模式,该系统能动态选择内部文档或实时网页,通过MCP协议实现工具的安全调用和数据访问。架构包含MCP服务器(智能体)、客户端及双向通信机制,支持向量数据库搜索和网页搜索两种工具。文章详细阐述了系统搭建步骤,包括环境配置、MCP服务器部署和RAG管道构建,最终实现能处理复杂查询的智能应用。
2025-07-23 13:04:07
841
原创 大部分时间你是需要融合结构化数据的检索增强生成(RAG)
结构化RAG:精准智能问答的核心技术 结构化RAG(检索增强生成)是传统RAG的升级版本,通过逻辑推理而非语义相似性实现精准问答。其核心流程包括四个关键步骤: 智能解析:采用布局感知分块技术,保留文档逻辑结构 知识提取:将文本转化为"实体-关系-属性"三元组 知识图谱构建:建立结构化索引系统(实体/动作/主题索引) 混合查询机制: 先进行符号逻辑搜索(确保精确性) 低置信度时自动切换向量搜索(保证灵活性) 这种架构使系统既能处理"列出爱丽丝批准的合同"等精确查询,也能
2025-07-14 14:26:10
66
原创 从零实现一个基于 mem0的具有长期记忆的Text2SQL代理
智能查询助手通过实现跨用户会话的长期记忆功能,改变了传统的文本转SQL体验。受Mem0架构启发,此实现专门专注于数据库查询交互,并保持完整的用户隔离,提供个性化、安全的体验。
2025-07-14 09:09:37
876
原创 一次使用 RAFT 和 Qwen3 实现端到端领域RAG自适应
介绍了使用 RAFT 方法微调小型语言模型的端到端过程。我们首先使用 llama-index 和 AI生成结构化训练数据,应用聊天风格的格式,并使用 Unsloth 微调 Qwen3 模型。整个目标是保持高效并针对域进行定制。我们还研究了如何保存和导出模型以进行部署。
2025-06-22 16:07:20
677
10
原创 LLM智能体指南:如何使用LangGraph和CrewAI自动化处理复杂任务
详细介绍了两个主要开源框架:LangGraph提供基于图的工作流控制,CrewAI支持多智能体角色协作。通过构建电子邮件日程自动化项目,演示了从环境搭建到代码实现的完整流程。智能体可以扫描邮件、提取会议和任务、生成清晰的日程安排。多智能体协作通过专业分工(提取器、优先级排序器、格式化器)提高效率。文章还讨论了安全隐私考虑、故障排除技巧和未来发展趋势,包括更智能的记忆系统、多模态处理和边缘部署。这些工具使开发者能够构建真正智能的自动化助手。
2025-06-17 14:46:18
863
18
原创 AI智能体的智能记忆系统:Agentic Memory
详细介绍了三种记忆类型:短期记忆(工作记忆)用于维持当前对话上下文;长期记忆包括程序性记忆(行为模式)、情景记忆(具体经历)和语义记忆(事实知识)。通过LangGraph框架,展示了如何在生产环境中实现记忆管理,包括检查点机制、数据库集成和语义搜索。核心案例是构建一个具备完整记忆功能的电子邮件智能体,演示了如何将三种记忆类型有机结合。该智能体能够学习用户偏好、记住项目上下文、优化处理策略,并基于反馈自我改进。这标志着从无状态工具向真正智能的有状态智能体的关键转变。
2025-06-17 12:49:56
1118
41
原创 Paper2Poster-PosterAgent:在几分钟内将您的研究论文变成海报
如何从科学论文自动生成学术海报。学术海报在科学交流中起着重要作用,需要在短时间内向与会者传达论文的核心发现。然而,现有的自动化幻灯片生成系统在海报生成方面仍存在显著挑战。
2025-06-15 09:41:37
850
10
原创 复习embedding编码范式及理解代理Agentic RAG及传统RAG的区别
本文介绍了三种句子嵌入编码范式(Bi-encoders、Cross-encoders、ColBERT)及其在NLP系统中的应用,重点对比了它们的交互能力与计算效率差异。传统RAG系统通过线性流程增强LLM生成能力,而智能体RAG(Agentic RAG)引入AI代理机制,通过动态规划、多工具协作实现更智能的检索-生成流程。代码示例展示了如何用LangChain构建代理RAG系统,其核心优势在于意图理解、策略规划和多步信息整合能力,显著提升了复杂查询的处理效果。两种RAG架构的区别类
2025-06-13 20:30:00
1584
6
原创 AI与机器学习ML:利用Python 从零实现神经网络
本文介绍了神经网络的基本结构与工作原理。通过一个包含10个观测值和3个特征变量的简单数据集示例,详细阐述了神经网络的前向传播过程,包括输入层、隐藏层和输出层的计算流程。文章重点讲解了反向传播机制和梯度下降算法,说明如何利用损失函数(二进制交叉熵)来调整权重和偏差参数,以最小化预测误差。示例中展示了ReLU和Sigmoid激活函数的使用场景,并演示了从输入数据到预测输出的完整计算过程,为理解神经网络的内部机制提供了清晰的技术路径。
2025-06-13 14:49:29
934
2
原创 如何设计一个用于大规模生产任务的人工智能AI系统
大规模AI系统构建的关键阶段 本文探讨了构建能够服务数百万用户、处理TB级数据的AI系统所需的核心开发阶段。第一阶段聚焦系统硬件与基础设施,详细分析了三种主流计算硬件(CPU/GPU/TPU)的适用场景,以及FPGA、ASIC等新型硬件的优势。文章指出硬件选择需结合模型架构和量化技术,并比较了不同云服务方案的性价比。 在分布式系统方面,强调了任务分解、资源自动调配和性能监控的重要性。网络优化需要关注延迟控制、带宽扩展和通信协议选择。数据存储解决方案则需根据数据类型选择对象存储/文件系统/数据库,并合理运用数
2025-06-11 23:30:00
1557
4
原创 四大LLM 微调开源工具包深度解析
本文介绍了四种开源工具包,帮助企业高效微调大语言模型(LLM)。Unsloth显著降低显存占用,使单GPU微调13B参数模型成为可能;DeepSpeed实现大规模分布式训练,支持70B参数的超大模型;vLLM优化推理效率,吞吐量提升2-4倍;Axolotl简化微调流程,支持多种高效技术。这些工具共同解决了企业面临的计算资源有限、高风险领域需求和快速迭代周期等挑战,使生产级LLM微调变得实用且高效。通过合理组合这些工具,企业可在普通硬件上实现专业级的模型定制,获得竞争优势
2025-06-11 18:24:10
1654
6
原创 理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
文章重点演示了如何使用 Ollama(运行本地 LLM)、LangChain-MCP 适配器和 Python 构建一个本地化、注重隐私的 MCP 客户端。该客户端通过 LangChain 智能体与 MCP 服务器(使用 FastMCP 实现)交互,调用在服务器端定义的工具(如添加、读取 SQLite 数据库记录)。文中详细展示了服务器和客户端的代码实现、工作流程和交互日志,突显了这种方法的模块化、可扩展性和用户友好性。展示了如何利用 MCP 和开源工具构建一个能在本地安全运行、通过自然语言操作外部系统的ai
2025-06-10 20:00:00
2245
1
原创 AI Agents系列之构建多智能体系统
本文介绍了智能体的核心组件(模型、工具、指令)及设计原则,重点探讨如何选择适合不同任务的模型、设计工具集及编写清晰指令。文章提出三种工具类型(基础、检索、执行)和四种编排模式(管理器、监督者、去中心化、群体),并以监督者模式为例展示多智能体协同的实现方法。关键建议包括优先自动化复杂决策/非结构化数据场景,通过原型测试确定最优模型,以及保持工具的模块化和可组合性。
2025-06-10 08:16:17
1003
原创 使用LangGraph和LangSmith构建多智能体人工智能系统
本文介绍了构建多智能体AI系统的关键步骤,重点探讨了如何通过LangGraph和LangSmith工具创建具备短期记忆和长期记忆能力的智能客服系统。文章首先讲解了环境设置、LangSmith的调试监控作用,以及使用Chinook音乐数据库作为测试数据集的方法。随后,作者详细阐述了智能体的记忆机制设计,对比了短期对话记忆(MemorySaver)和长期用户偏好记忆(InMemoryStore)的差异,为构建可进行上下文感知交互的多智能体系统奠定了基础。所有实现代码和理论说明均以Jupyter Notebook
2025-06-09 19:40:50
1298
2
原创 【阅读笔记】MemOS: 大语言模型内存增强生成操作系统
MEMOS:面向大语言模型的内存操作系统 研究提出MEMOS系统,通过统一管理参数化、激活和纯文本三类内存,解决当前大语言模型在长期知识管理方面的局限性。创新性地引入MemCube作为标准化内存单元,支持跨类型调度和生命周期管理。采用三层架构设计,包含接口层、操作层和基础设施层,实现对内存的统一治理。该系统显著提升了模型在长期对话状态维护、知识演化和多代理协作等方面的能力,为构建更智能、持续学习的大语言模型提供了新思路。未来将探索跨模型内存共享和自演化内存机制。
2025-06-09 17:40:16
1520
1
原创 如何打造一款金融推理工具Financial Reasoning Workflow:WebUI+Ollama+Fin-R1+MCP/RAG
本文探讨了结合金融专用大语言模型(Fin-R1)与金融工具链的金融推理解决方案。通过测试多个主流大模型对5年期10万加元贷款的计算结果,发现不同模型的准确性存在差异,其中Fin-R1和Phi4模型表现较好。文章介绍了在本地部署该方案的技术栈,包括Ollama、OpenWebUI、LightRAG等组件,并展示了Fin-R1在财务报告分析中的应用实例。该方案通过整合专业金融模型、计算工具和知识库,旨在提高金融推理任务的准确性和可靠性。
2025-06-07 00:15:00
1929
7
原创 基于智能代理人工智能(Agentic AI)对冲基金模拟系统:模范巴菲特、凯西·伍德的投资策略
一个由AI驱动的对冲基金模拟系统,能够通过模仿顶尖投资者的投资风格来生成交易信号。系统包含两种类型的人工智能体:(1) 个性化风格智能体(如巴菲特、凯西·伍德等7种投资风格)和(2) 技术任务智能体(包括估值、情绪、基本面等6项专项分析)。用户输入股票代码后,系统会调用Financial Datasets API获取真实财务数据,通过大语言模型(支持OpenAI、Google、Grok等供应商)进行分析,最终输出包含交易信号(买入/卖出、数量和置信度的决策报告。项目测试显示,不同风格智能体对同一股票可能给出
2025-06-06 02:15:00
1922
5
原创 NL2SQL技术新的解决方案SQL-R1:强化学习与监督微调的结合,显著提升了自然语言到SQL推理模型的性能和可解释性
摘要:论文《SQL-R1: Training Natural Language to SQL Reasoning Model By Reinforcement Learning》提出了一种基于强化学习的文本到SQL推理模型SQL-R1。该模型采用监督微调(SFT)和组相对策略优化(GRPO)两阶段训练,设计了格式、执行、结果和长度四层奖励机制。实验表明,SQL-R1在Spider和BIRD基准测试中分别达到88.6%和66.6%的执行准确率,显著优于传统方法。研究创新性地证明了强化学习在提升NL2SQL任务
2025-06-06 00:30:00
1347
4
原创 MCP与检索增强生成(RAG):AI应用的强大组合
模型上下文协议(MCP)和检索增强生成(RAG)是两项互补的人工智能技术,分别适用于不同场景。MCP作为标准化通信协议,适合处理结构化、静态的上下文信息,如公司规则和用户偏好;而RAG则擅长处理大规模动态数据,如知识库和实时信息。二者结合可实现更全面的人工智能解决方案:MCP提供实时数据接口,RAG确保知识准确性。技术实现上可采用LangChain协调组件,结合向量数据库和API集成。这种协同方案既能减少AI幻觉,又能提高响应效率,但也面临延迟和集成复杂度
2025-06-05 00:15:00
944
1
原创 Legal Query RAG(LQ-RAG):一种新的RAG框架用以减少RAG在法律领域的幻觉
人工智能正在变革法律行业,但通用大模型在法律文本处理中存在严重"幻觉"问题,虚构案例发生率高达58%-82%。为此,研究人员开发了LQ-RAG框架,采用双层级架构:微调层通过法律语料库训练嵌入和生成模型,构建领域专业知识;RAG层整合检索增强生成与递归反馈机制,通过评估代理确保响应的相关性、准确性和事实依据性。测试显示,微调后的嵌入模型性能提升13-15%,有效缓解了法律AI的幻觉问题。该系统为法律专业人士提供了更可靠的智能辅助工具。
2025-06-05 00:15:00
1176
5
原创 RAG-Gym:一个用于优化带过程监督的代理型RAG的统一框架
本文提出RAG-Gym框架,通过过程监督增强代理型RAG系统的信息检索能力。该框架将问答任务建模为嵌套MDP,引入三种过程监督方法(SFT、DPO、PRM)优化代理。研究提出的ReSearch代理创新性地整合推理与搜索,在多个基准测试中取得最优性能(平均EM 54.31%,F1 62.41%)。实验表明:1)过程监督显著提升性能(最高25.6%);2)GPT-4标注的奖励模型与人类偏好高度一致(85.85%);3)性能随训练/推理资源增加而提升。该工作为复杂知识检索任务提供了有效的自适应解决方案。
2025-06-04 20:00:00
1148
原创 MCPO:使用MCP工具为Open-WebUI/Ollama助力
Open WebUI 现已正式支持 MCP Tool 服务器,通过兼容 OpenAPI 的代理实现(MCPO)实现连接。MCPO 作为中间代理,将 MCP 服务器命令转换为 RESTful API,简化了工具与大语言模型的集成。文章详细介绍了配置流程:安装 MCPO 服务器、设置多个 MCP 服务实例,以及在 Open-WebUI 中添加工具端点。此外,还演示了如何创建新的 MCP 服务器(如关税新闻反应查询工具),包括代码生成、测试和集成步骤。该方案为开发者提供了便捷的 AI 工具连接方案,支持 stdi
2025-06-04 09:46:33
2076
4
原创 探索注意力模型中的经典位置嵌入
本文探讨了Transformer模型中位置嵌入的不同方法。首先介绍了绝对位置嵌入,如原始Transformer论文中的正弦波编码。然后重点分析了相对位置嵌入的多种实现方式,包括可训练嵌入、Transformer-XL的混合方法,以及DeBERTa的简洁交叉项设计。文章通过图示和公式对比了这些技术的核心思想,强调相对位置嵌入通过标记间距离关系来提升模型性能。不同方法各具特色,从复杂组合到精简设计,反映了研究者对位置信息处理的持续优化。位置嵌入作为注意力模型的关键组件,其发展直接影响模型对序列数据的理解能力。
2025-06-04 00:45:00
1493
1
原创 详解代理型RAG与MCP服务器集成
代理型RAG通过引入AI代理优化传统检索增强生成技术,实现动态多步骤检索与跨工具协作。其核心组件包括路由代理、查询规划代理、ReAct代理及计划执行代理,分别承担智能调度、任务分解、自适应执行和自主决策功能。模型上下文协议(MCP)作为关键基础设施,标准化AI与外部数据源的交互,通过MCP服务器实现长期记忆存储和工具集成。典型架构中,代理通过MCP客户端协调多知识源检索,结合LLM生成更精准的响应。这种结合显著提升了系统的灵活性、适应性和准确性,推动RAG向主动式智能问题解决范式演进。
2025-06-03 09:01:43
205
3
DeepSeek高效使用技巧:职场、学术、自媒体的内容生成与问题求解利器
2025-03-01
语音对话大模型及其基准测试的全面综述与最新进展
2025-03-01
推理模型构建:四种主要方法和技术进展综述
2025-03-10
智能投标领域的星火投标平台-利用大模型技术提高编标效率与标书质量的应用指南
2025-03-10
区块链应用与测试:涵盖用户注册页面测试、文档分类及应用部署
2025-03-11
智慧政策系统的多功能综合应用及其实现方案-聚焦文件解析、知识图谱和智能问答
2025-03-03
自适应确定DBSCAN算法参数的算法研究_李文杰.pdf
2020-04-02
【人工智能项目实践】周末可构建的30个AI项目全解析:从基础数据处理到高级模型微调
2025-05-26
python源代码详解检索增强生成(20+RAG技术复现)
2025-04-14
基于langchain/llamaindex的20多种RAG技术实现
2025-04-22
大型语言模型、预训练模型与嵌入模型的选型指南及应用场景解析
2025-04-01
基于Label Studio的文档标注方法及应用场景
2025-03-25
图数据库基准测试:TigerGraph与其他图数据库的性能对比及优势解析
2025-03-25
RAG学习RL测试数据集
2025-03-25
企业AIGC商业落地应用解析:技术进步引领企业服务创新与优化
2025-03-24
RAG 测试pdf文件,配套《动手实现各类RAG》专栏,不借助任何RAG现成框架,徒手撸python实现各类RAG功能、增强技术等
2025-03-20
基于Label Studio的文本标注工具及其实现自然语言处理任务的操作手册
2025-03-12
面向统一端到端模型的下一代光学字符识别理论与GOT-OCR-2.0模型解析
2025-03-13
从零构建RAG-基于提示连接检索增强生成与LLM的技术解析及应用场景
2025-03-11
使用DeepSeek进行高效学习、工作与旅行规划的经验与技巧详解
2025-03-11
招标投文本NER/REL数据集-中标单位与金额解析及其关联信息整理
2025-03-17
TA创建的收藏夹 TA关注的收藏夹
TA关注的人