使用最新Dify1.4.1集成LM Studio的QWQ32B绘制工作流

使用最新Dify1.4.1集成LM Studio的QWQ32B绘制工作流

前言

之前已经在战99部署了LM Studio及QWQ32B小模型:

https://lizhiyong.blog.csdn.net/article/details/147237895

也在Win10的Z840部署过老版本Dify并且集成了Ollama的Deepseek:

https://lizhiyong.blog.csdn.net/article/details/145602366

现在战99上部署个目前最新版本Dify1.4.1,集成LM Studio的QWQ32B,再绘制工作流拓展使用场景

步骤

安装Dify

参照之前的步骤,本次为了方便,暂不修改EXPOSE_NGINX_PORT的配置,以便可以直接80端口访问

cd D:\\dify\docker
docker compose down
git pull origin main  #或者自己http下载解包
docker compose pull
docker compose up -d

和老版本安装部署方式一致

开启LM Studio接口

在这里插入图片描述

开启LM Studio的接口后,即可通过1234端口调用接口访问模型

使用PostMan调用接口试试:

GET http://127.0.0.1:1234/v1/models

{
    "data": [
        {
            "id": "qwen3-14b",
            "object": "model",
            "owned_by": "organization_owner"
        },
        {
            "id": "text-embedding-bge-m3",
            "object": "model",
            "owned_by": "organization_owner"
        },
        {
            "id": "huihui-ai.glm-4-32b-0414-abliterated",
            "object": "model",
            "owned_by": "organization_owner"
        },
        {
            "id": "qwen3-reranker-8b",
            "object": "model",
            "owned_by": "organization_owner"
        },
        {
            "id": "qwen3-embedding-8b",
            "object": "model",
            "owned_by": "organization_owner"
        },
        {
            "id": "text-embedding-nomic-embed-text-v1.5",
            "object": "model",
            "owned_by": "organization_owner"
        },
        {
            "id": "qwen3-32b",
            "object": "model",
            "owned_by": "organization_owner"
        },
        {
            "id": "qwen3-30b-a3b",
            "object": "model",
            "owned_by": "organization_owner"
        },
        {
            "id": "huihui-ai.deepseek-r1-distill-qwen-14b-abliterated-v2",
            "object": "model",
            "owned_by": "organization_owner"
        },
        {
            "id": "huihui-ai_qwq-32b-abliterated",
            "object": "model",
            "owned_by": "organization_owner"
        }
    ],
    "object": "list"
}

即可查到目前可用的模型,id就是完整的模型名,后续要用!!!

配置Dify的模型供应商

http://localhost/explore/apps

在这里插入图片描述

安装需要的插件,之后配置接口,LM Studio这个插件目前的版本在绘制工作流时有报错,建议使用OpenAI的兼容api插件

需要注意的配置:

API endpoint URL:http://host.docker.internal:1234/v1/
模型名称:huihui-ai_qwq-32b-abliterated

由于还是DockerDesktop方式部署的,要使用这个host

模型名称就填写上方查到的某个id值

工作流配置

鸡冻人心的时刻到来了:

在这里插入图片描述

可以新建一个工作流,LLM要使用OpenAI兼容API才不会报错!!!使用LM Studio的插件会报错:

1 validation error for LLMNodeData model.mode Field required [type=missing, input_value={'provider': 'stvlynn/lms...'completion_params': {}}, input_type=dict] For further information visit https://errors.pydantic.dev/2.11/v/missing

在这里插入图片描述

可以看到有很多种节点可以使用。代码类节点可以编写JS和Python:

在这里插入图片描述

要注意返回的变量名和输出变量需一致!!!

验证工作流

在这里插入图片描述

随便提问下,可以发现工作流正常运行起来了!!!

最常用的还是条件分支节点,根据关键字去匹配该去哪个分支,后续即可按照不同的Prompt去调用对应的LLM节点大模型及检索对应的知识库,目前来看,我们生产落地最稳的还是RAG。

转载请注明出处:https://lizhiyong.blog.csdn.net/article/details/148607462

在这里插入图片描述

### Dify 工作流的配置与操作指南 Dify 是一个强大的开源平台,专注于帮助用户通过可视化界面快速构建和部署 AI 应用[^1]。其工作流功能分为两种主要类型:Chatflow 和 Workflow,分别适用于对话类场景和自动化任务处理[^1]。 #### 1. 工作流的基本概念 Dify工作流设计旨在降低技术门槛,使用户能够通过简单的拖拽操作完成复杂逻辑的构建[^3]。以下是两种主要工作流类型的简要说明: - **Chatflow(对话流)**:用于多轮交互场景,例如客服系统、智能问答等。它支持动态对话管理和上下文感知。 - **Workflow(工作流)**:适合线性执行的任务,如数据处理、文本翻译、内容生成等。这种工作流强调高效性和自动化能力[^2]。 #### 2. 配置工作流的操作步骤 以下是配置 Dify 工作流的核心流程: #### (1)创建新的工作流Dify 平台中,用户可以通过点击“新建工作流”按钮启动一个新的项目。根据需求选择 Chatflow 或 Workflow 类型。 #### (2)添加节点与连接 Dify 提供了丰富的节点库,包括但不限于数据输入、模型调用、条件判断、输出结果等。用户只需从左侧工具栏中拖拽所需节点到画布上,并通过连线定义节点之间的执行顺序[^3]。 #### (3)设置节点参数 每个节点都具有特定的配置选项。例如,在调用语言模型时,用户可以指定模型类型(如 DeepSeek-R1)、输入参数、输出格式等。对于条件判断节点,则需要定义触发条件及分支逻辑。 #### (4)测试与调试 完成工作流设计后,建议先进行小规模测试以验证逻辑正确性。Dify 提供了内置的日志查看功能,便于定位潜在问题并优化性能[^2]。 #### 3. 实战案例:新闻编辑助手 为了更好地理解 Dify 工作流的实际应用,以下是一个具体的案例——构建“新闻编辑助手”[^2]: - **步骤 1**:使用网页抓取节点获取目标文章内容。 - **步骤 2**:调用翻译模型将文章内容转换为目标语言。 - **步骤 3**:通过标题生成模型为文章创建吸引人的标题。 - **步骤 4**:利用图像搜索服务为新闻匹配合适的配图。 - **步骤 5**:将所有结果整合成最终输出文件。 此案例展示了如何通过串联多个节点实现端到端的自动化流程。 ```python # 示例代码:调用语言模型生成标题 import requests def generate_title(text): url = "https://api.dify.com/v1/models/title-generator" payload = {"input": text} headers = {"Authorization": "Bearer YOUR_API_KEY"} response = requests.post(url, json=payload, headers=headers) return response.json()["title"] sample_text = "Artificial intelligence is transforming industries worldwide." print(generate_title(sample_text)) ``` ### 注意事项 在使用 Dify 工作流时,需注意以下几点: - 确保所有依赖的外部服务(如 API 接口)正常运行。 - 定期保存工作流配置,避免因意外退出导致数据丢失。 - 根据实际需求灵活调整节点参数,提升整体效率[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值