LLMs Ops热门工具探索:LangSmith、Langfuse与Dify

随着人工智能技术的飞速发展,大型语言模型(LLMs)在各个领域的应用日益广泛。然而,LLMs的部署、管理和优化却是一项复杂而繁琐的任务(LLMOps:大型语言模型的生产运营之道),这催生了对LLMs Ops(Operations)工具的需求。本文将介绍三款热门的LLMs Ops工具——LangSmith、Langfuse和Dify,它们各自在调试、监控、低代码开发等方面提供了强大的支持,助力企业高效构建和优化LLMs应用。

图片

一、LLMs应用开发中的挑战

(一)数据集管理问题

在去年的 AI 团购助手项目中,数据集采用飞书文档维护,存在同步困难、标签和字段更新耗时等问题。虽然总数据量只有几百条,但已经占用了大量人力。

(二)版本管理难题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值