结合DeepSeek、FAISS与LangChain构建RAG系统

Retrieval-Augmented Generation(RAG)技术已经成为了一项革命性的突破。它打破了传统语言模型仅依赖预训练知识的局限,通过动态检索外部信息,生成更加相关和准确的回答。本文将详细介绍如何使用LangChain、FAISS和DeepSeek-LLM构建一个处理PDF文档、检索相关内容并生成智能响应的RAG系统。

一、RAG技术概述

RAG技术是一种结合了检索和生成能力的新型语言模型应用方式。其核心在于,首先使用一个检索器从知识库中获取与查询相关的文档片段,然后基于这些检索到的上下文,利用语言模型(LLM)生成回答。这种方式显著提高了回答的准确性和时效性,因为它能够实时地、基于事实地、动态地生成响应。

二、技术栈介绍

在构建 RAG 系统时,选择合适的技术工具至关重要。本文所介绍的系统使用了以下几种关键技术:

  • LangChain

    作为连接检索器和语言模型的桥梁,LangChain 提供了一系列便捷的工具和接口,能轻松整合不同的组件,让开发人员专注于系统逻辑的实现。

  • FAISS

    Facebook AI Similarity Search 的简称,它是一种高效的向量相似度搜索库。在 RAG 系统里,FAISS 用于存储文本向量嵌入,并快速查找与查询向量最相似的文本片段,大大提高了检索效率。

  • DeepSeek-LLM

    作为负责生成回答的语言模型,DeepSeek-LLM 凭借其强大的语言理解和生成能力,在检索到的上下文基础上,生成高质量的回答。

  • Sentence Transformers

    用于将文本转换为向量表示,也就是文本嵌入。这些向量能够精准地捕捉文本的语义信息,为后续的检索和匹配提供基础。

  • PyTorch

    作为深度学习框架,PyTorch 负责加载和运行 DeepSeek-LLM 模型,借助 GPU 加速技

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值