ubuntu18.04服务搭建yolov5开发环境

本文详细介绍了如何在Ubuntu系统上安装配置CUDA环境、cuDNN补丁、Anaconda3,以及如何使用Anaconda创建并激活PyTorch虚拟环境,并进行YOLOv5的目标检测配置与测试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 系统和显卡信息

(1) 系统信息

kandi@telpo-System-Product-Name:~$ cat /proc/version
Linux version 4.15.0-191-generic (buildd@lcy02-amd64-032) (gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04)) #202-Ubuntu SMP Thu Au               g 4 01:49:29 UTC 2022

(2) 显卡信息

在这里插入图片描述

2. 下载安装CUDA

cuda官网链接
在这里插入图片描述
得到的下载命令如下:

wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin
sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/11.6.0/local_installers/cuda-repo-ubuntu1804-11-6-local_11.6.0-510.39.01-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1804-11-6-local_11.6.0-510.39.01-1_amd64.deb
sudo apt-key add /var/cuda-repo-ubuntu1804-11-6-local/7fa2af80.pub
sudo apt-get update
sudo apt-get -y install cuda

在终端用命令“nvcc -V”能打印出版本信息,则安装成功,提示"Command ‘nvcc’ not found, but can be installed with:"

这并不是因为系统没有安装CUDA,而是环境中没有罢了。

注意: 千万不要执行apt install nvidia-cuda-toolkit,否则就会重新安装一个版本。

解决方法是进入bin目录,首先找到cuda的bin目录,例如:/usr/local/cuda/bin,查看是否有nvcc

2.1 1cuda环境变量配置

export PATH=/usr/local/cuda-11.6/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.6/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

按 “ESC” 推出插入模式,“:wq” 保存并退出vim。输出命令“source ~/.bashrc”,立即生效。

再次输入nvcc -V查看即可显示CUDA的版本
在这里插入图片描述

2.2下载和安装cudnn

严格来讲cuDNN不能叫安装。它其实是对CUDA的一些补充,所以“安装”过程很简单。去英伟达官网下载对应CUDA 11.6的cuDNN压缩包(这一步可能需要注册英伟达账号)。解压之后得到cuda目录,cuda目录下面有include和lib64两个子目录,将这两个目录下面的所有文件拷贝到CUDA 11.6安装路径对应的目录下面即可。

英伟达cudnn下载链接
安装cudnn的时候也需要登录Nvidia账号,我下载的如下版本:
找到对应CUDA 11.6版本对应的cudnn

在这里插入图片描述

sudo cp cudnn-local-repo-ubuntu1804-8.6.0.163_1.0-1_amd64.deb /usr/local
cd /usr/local
sudo dpkg -i cudnn-local-repo-ubuntu1804-8.6.0.163_1.0-1_amd64.deb
sudo cp /var/cudnn-local-repo-ubuntu1804-8.6.0.163/cudnn-local-77B32ECB-keyring.gpg /usr/share/keyrings/

在这里插入图片描述

3. 下载并安装Anaconda3

可以去官网下包,没翻墙情况下清华镜像站 下载anaconda 的速度较官网上要快很多
在这里插入图片描述

3.1 sh命令安装Anaconda3

sh Anaconda3-2022.10-Linux-x86_64.sh

在这里插入图片描述

3.2 “conda info”验证安装是否成功

安装成功后,重启系统或是执行命令“source .bashrc”,输入“conda info”可看到下面的信息,表示安装成功
在这里插入图片描述

4. 确定对应的pytorch版本

进入官网寻找相应pytorch版本
官网链接
根据自己的需求选择,我们用cuda11.6为例,通过官网可以获取到conda安装pytorch的命令
在这里插入图片描述

5. 用Anaconda创建并激活虚拟环境

(1) 创建虚拟环境
我这次目的是搭建yolov5开发环境,创建名为pytorch1.12.1的虚拟环境的命令

conda create -n pytorch python=3.9.13

在这步的时候会安装python3.9.13,还有其他软件包
在这里插入图片描述
如果遇到下载错误,像下面的情况
在这里插入图片描述
如果~/.condarc文件不存在,新建一个,并加入下面的内容

ssl_verify: true
show_channel_urls: true

channels:
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/win-64/
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64/

(2) 激活虚拟环境

conda activate pytorch1.12.1

在这里插入图片描述
(3) 在创建的pytorch1.12.1环境下安装pytorch1.12.1版本

  1. conda安装方式
    在这里插入图片描述
    下载命令
conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia

在这里插入图片描述
再重新执行一次命令就可以了,下面的软件将被下载
在这里插入图片描述
在这里插入图片描述
经过一些尝试,没有成功,改为下面的pip安装方式

  1. 用pip方式安装
    在这里插入图片描述
    安装命令
    pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116

在这里插入图片描述

6. yolov5配置

要进入我们在上面创建的pytorch环境下配置。

6.1 下载yolov5代码

比如进入我的目录~/code/yolo下,用下面的命令clone代码

git clone https://github.com/ultralytics/yolov5.git

6.2 安装所需要的依赖库

cd yolov5
pip install -r requirements.txt #配置yolov5环境,安装所需要的依赖库

安装成功后:
在这里插入图片描述

git clone https://github.com/ultralytics/yolov5
cd yolov5
conda activate yolov5_env

6.3 目标检测测试

python detect.py --source data/images/zidane.jpg

刚开始忘记切换环境,在我们默认的base下执行如下:
在这里插入图片描述
在我们创建的pytorch环境下执行
在这里插入图片描述
检测生成的结果在runs/detect/exp目录下,结果如下
在这里插入图片描述

### 配置及使用 YOLOv8 的方法 #### 1. 安装 NVIDIA 显卡驱动 为了确保 GPU 加速功能正常工作,需先安装适合的 NVIDIA 显卡驱动。通过 `ubuntu-drivers` 工具可以自动检测并推荐合适的驱动版本。 ```bash sudo apt update && sudo apt upgrade -y sudo apt install ubuntu-drivers-common [^1] ``` 执行以下命令来查看推荐的驱动: ```bash ubuntu-drivers devices ``` 根据提示选择对应的驱动进行安装,例如对于某些显卡可能需要安装如下驱动: ```bash sudo apt install nvidia-driver-xxx ``` 完成安装后重启计算机以使更改生效。 --- #### 2. 设置 CUDA 和 cuDNN 环境 YOLOv8 支持基于 PyTorch 的深度学习框架,因此需要配置支持 GPU 计算的 CUDA 和 cuDNN 版本。建议按照官方文档中的兼容性表选择对应版本[^2]。 下载并安装 CUDA Toolkit (如 cuda_10.2): ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.2.89-1_amd64.deb sudo dpkg -i cuda-repo-*.deb sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/" sudo apt-get update sudo apt-get install cuda-10-2 ``` 接着设置环境变量以便系统能够识别 CUDA 路径: ```bash echo 'export PATH=/usr/local/cuda-10.2/bin:$PATH' >> ~/.bashrc echo 'export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64:${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}' >> ~/.bashrc source ~/.bashrc ``` cuDNN 可从 NVIDIA 开发者网站获取,并解压到 `/usr/local/cuda-10.2/`. --- #### 3. 创建 Anaconda Python 环境 Anaconda 是一种流行的科学计算工具包,它简化了依赖管理过程。创建一个新的虚拟环境用于 YOLOv8 运行。 ```bash wget https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh bash Anaconda3-2022.10-Linux-x86_64.sh ``` 初始化完成后启动 conda 并建立新环境: ```bash conda create -n yolov8_env python=3.8 conda activate yolov8_env [^2] ``` 在此环境中安装必要的库文件: ```bash pip install torch==1.12.1 torchvision==0.13.1 torchaudio===0.12.1 --extra-index-url https://download.pytorch.org/whl/cu102 pip install ultralytics opencv-python matplotlib scikit-image tensorboard tqdm pyyaml numpy scipy cython pillow h5py imgaug albumentations pandas seaborn jupyterlab ipython ``` --- #### 4. 下载和克隆 YOLOv8 源码仓库 访问 Ultralytics 提供的 GitHub 页面并将项目复制至本地目录。 ```bash git clone https://github.com/ultralytics/ultralytics.git cd ultralytics/ ``` 验证安装是否成功以及测试模型推理能力: ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') # Load a pretrained model results = model('https://ultralytics.com/images/bus.jpg') # Perform inference on an image file print(results) [^2] ``` --- #### 5. 整合 ROS 功能节点 如果计划将 YOLOv8 结果集成到机器人操作系统(ROS),则需要编写自定义消息传递机制或者订阅摄像头主题数据流作为输入源。 首先确认已正确部署 ROS Melodic 发布版及其附加组件: ```bash sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list' curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc | sudo apt-key add - sudo apt update && sudo apt install ros-melodic-desktop-full ``` 随后开发一个简单的 Python 或 C++ 节点实现图像处理逻辑并与目标检测算法交互。 --- #### 总结 上述流程涵盖了从硬件准备、软件栈构建直至实际应用的一系列操作指南。每一步都至关重要,任何环节缺失均可能导致最终失败。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

loongembedded

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值