FastText 增量训练

本文介绍了fastText库的新版本,重点是IncrementalTraining功能,包括如何下载和配置代码,新增的-nepoch和-inputModel参数,以及如何进行一般训练和增量训练的示例。文章还展示了如何利用这些特性进行模型微调和海量数据训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.安装正确版本

(1)下载IncrementalTraining分支代码GitHub - SergeiAlonichau/fastText at IncrementalTraining,或者下载资源

(2)将上一步下载的zip进行解压,然后进入文件夹执行make操作即可;

仿照下面的示例,注意一定要是IncrementalTraining分支的代码

2.使用教程

当前版本代码新增了-nepoch、-inputModel两个参数。

-inputModel:指定需要继续训练的模型文件,不需要增量训练时不需要设置该参数。

-nepoch:指定该参数时每迭代一个epoch将会对模型保存一次,并且模型前缀为inputModel传入的参数。当nepoch为0时则不进行加载checkpoint,默认值为-1.

新增用途:

(1)在每轮epoch下可以进行增量训练和评估;

(2)可以通过分批训练来支持海量数据的训练;

(3)微调已经预训练好的模型。

3.使用示例

3.1 一般训练

执行命令


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值