LangChain集成DeepSeek实现AI对话

本文介绍如何使用AI开源框架 LangChain,集成调用DeepSeek大模型,实现AI对话功能,并给出Python示例代码。

一、LangChain是什么

LangChain:LangChain 是一个用于开发由大型语言模型 (LLM) 提供支持的应用程序的框架。LangChain 为大型语言模型和相关 技术,例如嵌入模型和向量存储,并可集成数百个提供商的模型。

LangChain 简化了 LLM 应用程序生命周期的每个阶段:

1、开发:使用 LangChain 的开源组件第三方集成构建应用程序。 使用 LangGraph 构建具有一流流式处理和人机回圈支持的有状态代理。

2、产品化:使用 LangSmith 检查、监控和评估您的应用程序,以便您可以放心地持续优化和部署。

3、部署:使用 LangGraph 平台将您的 LangGraph 应用程序转变为生产就绪的 API 和助手。

二、前提条件

1、Python运行环境安装。建议使用Python3.10以上版本,本示例使用了 Python 3.12.9版本。

2、Python开发工具安装。本人是vue\Java\python多种语言开发,所以使用了 IntelliJ IDEA开发工具。读者可以根据个人习惯选择合适的Python开发工具,比如:PyCharm、VS Code。

3、注册DeepSeek,获得api_key访问deepseek的AI开放平台完成注册:https://platform.deepseek.com。

三、代码实现

1、创建python工程

首先,通过开发工具创建一个python工程。这一步很简单,不再描述。

接着,激活虚拟环境项目目录,并通过以下命令创建并激活虚拟环境:

python -m venv venv   #有的环境下命令是python3或者py

.\venv\Scripts\activate  #windows下的激活命令

注意:如果是通过IDEA工具创建的Python工程,默认会创建并激活venv虚拟环境,就不再需要手动创建

2、pip安装依赖包

本示例使用LangChain和DeepSeek,所以需要先安装这两个依赖包。

在虚拟环境命令窗口执行:

pip install -U langchain
pip install -U langchain-deepseek

3、开发python代码

通过Python开发工具,创建一个python文件,命名为langchain-deepseek.py。源代码如下:

from langchain_deepseek import ChatDeepSeek

llm = ChatDeepSeek(
    model="deepseek-chat",
    temperature=0,
    max_tokens=None,
    timeout=None,
    max_retries=2,
    api_key="sk-e508ba61639640848060a1a2c1ee7b17",
)

messages = [
    ("system", "你是一个有创意的助手,擅长根据用户问题提供有趣且相关的内容。输出内容长度不超过100个字。"),
    ("human", "今天北京天气怎么样?"),
]

for chunk in llm.stream(messages):
    print(chunk.text(), end="")

运行该python文件,执行输出AI对话结果。

<think>嗯,用户想了解LangChain如何使用DeepSeek,对吧?首先,我需要确认自己对这两个工具的理解是否正确。LangChain是一个用于构建基于大型语言模型(LLM)的应用程序的框架,而DeepSeek可能指的是深度求索公司开发的大模型或者相关服务。不过,用户提到的“deepseek”具体指什么?是不是DeepSeek的API接口,或者是他们提供的某种工具?可能需要进一步确认,但根据上下文,应该是指集成DeepSeek的模型到LangChain中。 接下来,用户的问题是如何在LangChain使用DeepSeek。根据我对LangChain的了解,它支持多种LLM的集成,比如OpenAI、Hugging Face等。所以,如果DeepSeek提供了类似的API接口,应该可以通过自定义LLM的方式接入到LangChain中。 首先,我需要回忆LangChain的文档,看看是否有现成的DeepSeek集成。如果没有,可能需要用户自己实现一个自定义的LLM封装类。这通常涉及继承BaseLLM类,并实现必要的方法,比如_call和_identifying_params。然后,用户需要调用DeepSeek的API,处理请求和响应。 另外,用户可能需要先获取DeepSeek的API密钥,并安装必要的Python库,比如requests或者DeepSeek提供的SDK。然后,在代码中配置API密钥,设置模型参数,比如温度(temperature)、最大令牌数(max_tokens)等。 举个例子,假设DeepSeek的API类似于OpenAI,那么用户可能需要构造一个HTTP请求,发送提示文本到DeepSeek的端点,并解析返回的结果。在LangChain中,这个过程会被封装到自定义的LLM类里,之后就可以像使用其他LLM一样使用DeepSeek了。 但需要注意,不同的模型可能有不同的输入格式和参数设置。比如,DeepSeek的API可能需要特定的JSON结构,或者对提示的格式有特别要求。这时候,用户需要根据DeepSeek的文档来调整请求参数。 此外,可能还需要处理异常情况,比如API调用失败、速率限制等。在自定义LLM类中,应该包含错误处理逻辑,确保应用程序的健壮性。 如果用户的问题是关于使用DeepSeek的本地模型,比如他们自己部署的模型,那么可能需要使用Hugging Face的Transformers库或者类似的工具来加载模型,并通过LangChain的接口进行集成。这种情况下,需要更多的本地资源配置,比如GPU支持、模型文件路径等。 总结一下,步骤大致是:1. 确认DeepSeek的API或模型的使用方式;2. 在LangChain中创建自定义LLM类;3. 处理API调用或模型推理;4. 集成LangChain的链、代理或其他组件中。可能需要参考双方的文档,确保接口兼容性,同时注意错误处理和参数配置。 最后,用户可能需要具体的代码示例,所以应该提供一个简单的例子,展示如何封装DeepSeek的API,并在LangChain使用。同时提醒用户替换API密钥等敏感信息,并注意安装必要的依赖库。</think>以下是关于如何在LangChain集成DeepSeek的逐步说明: --- ### **1. 基本概念理解** - **LangChain**: 一个用于构建大语言模型(LLM)应用的框架,支持链式调用、工具集成、记忆管理等功能。 - **DeepSeek**: 深度求索公司开发的智能模型,可能通过API或本地部署提供文本生成、推理等服务。 --- ### **2. 集成DeepSeek的核心步骤** #### **步骤1:确认DeepSeek的接口形式** - 若使用**API服务**:需获取API端点(Endpoint)和密钥。 - 若使用**本地模型**:需确保模型已部署,并安装相应依赖(如Hugging Face库)。 #### **步骤2:创建自定义LLM封装类** 在LangChain中通过继承`BaseLLM`或`LLM`类实现: ```python from langchain_core.language_models import BaseLLM from typing import Optional, List, Dict class DeepSeekLLM(BaseLLM): api_key: str # DeepSeek API密钥 model_name: str = "deepseek-chat" # 模型名称,根据文档调整 def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: # 调用DeepSeek API或本地模型 import requests headers = {"Authorization": f"Bearer {self.api_key}"} data = { "model": self.model_name, "messages": [{"role": "user", "content": prompt}] } response = requests.post("https://api.deepseek.com/v1/chat/completions", json=data, headers=headers) return response.json()["choices"][0]["message"]["content"] @property def _identifying_params(self) -> Dict: return {"model_name": self.model_name} ``` #### **步骤3:在LangChain使用** ```python from langchain.chains import LLMChain from langchain.prompts import PromptTemplate # 初始化DeepSeek模型 deepseek = DeepSeekLLM(api_key="your-api-key") # 创建提示模板 prompt = PromptTemplate.from_template("请解释:{question}") # 构建链式调用 chain = LLMChain(llm=deepseek, prompt=prompt) # 执行调用 result = chain.invoke({"question": "量子计算如何影响密码学?"}) print(result["text"]) ``` --- ### **3. 关键注意事项** 1. **API兼容性**:确保请求格式与DeepSeek文档一致(如消息结构、参数名称)。 2. **错误处理**:添加重试逻辑和异常捕获(如网络超时)。 3. **本地模型集成**:若使用Hugging Face模型,可通过`HuggingFacePipeline`直接封装。 4. **性能优化**:调整`temperature`、`max_tokens`等参数控制生成结果。 --- ### **4. 典型应用场景** - **问答系统**:结合检索增强生成(RAG)提升答案准确性。 - **智能助手**:通过`Agents`模块调用工具(如搜索、计算器)。 - **数据处理**:解析非结构化文本为结构化数据(如JSON)。 --- ### **5. 常见问题** - **Q**: 如何解决API速率限制? **A**: 在代码中增加`time.sleep()`或使用异步请求。 - **Q**: 如何缓存结果以节省成本? **A**: 使用LangChain的`SQLiteCache`或`RedisCache`模块。 如需更具体的代码示例或参数配置,建议参考DeepSeek官方文档和LangChain集成指南。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大龄码农有梦想

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值