nuScenes 数据集是自动驾驶领域的重要开源资源,旨在推动多模态感知与复杂场景下的算法研究。以下是对该数据集的详细介绍:
基本信息
- 发布方:由安波福(Aptiv)旗下的nuTonomy团队于2019年发布。
- 数据规模:
- 场景:1000个场景,每个时长20秒,关键帧采样频率为2Hz(共4万帧)。
- 传感器数据:包含约140万张摄像头图像、40万帧激光雷达点云及39万次雷达扫描。
- 标注:超过140万个3D边界框,涵盖23类物体(如车辆、行人、自行车等),并包含物体轨迹ID及属性标签。
数据内容
-
多模态传感器配置:
- 摄像头:6个(覆盖360°),分辨率为1600×900,频率12Hz。
- 激光雷达:1个32线旋转式雷达,频率20Hz,点云密度较高。
- 雷达:5个毫米波雷达,频率13Hz,提供速度信息。
- 定位:GPS和IMU用于精确的位姿与运动状态估计。
-
标注细节:
- 3D边界框:精确的位置、尺寸、方向标注。
- 属性与状态:如车辆是否停车、行人是否携带物品等。
- 场景元数据:天气(晴天、雨天)、时间(白天、夜晚)、地点(波士顿、新加坡)等。
-
辅助数据:
- 高精地图:提供车道、交通灯等语义信息,支持路径规划任务。
- 扩展数据集:如nuScenes-lidarseg(点云分割)、nuImages(额外图像标注)。
主要特色
-
多任务支持:
- 支持3D检测、多目标跟踪(MOT)、轨迹预测、激光雷达分割等任务。
- 评估指标丰富,如mAP(平均精度)、AMOTA(多目标跟踪精度)等。
-
复杂性与真实性:
- 包含密集交通、恶劣天气、夜间场景,挑战算法鲁棒性。
- 多传感器同步与校准问题模拟真实自动驾驶环境。
-
工具链完善:
- 提供nuScenes devkit,简化数据加载、可视化与评估流程。
- 数据集划分为训练集(700场景)、验证集(150场景)、测试集(150场景)。
应用场景
- 感知算法开发:如多模态融合的3D物体检测与跟踪。
- 预测与规划:利用物体轨迹和高精地图研究行为预测。
- 学术研究:推动传感器融合、域适应、半监督学习等方向。
挑战性
- 数据规模大:处理多模态数据需高效的计算与存储管理。
- 标注复杂性:3D框标注与属性标签增加了模型训练难度。
- 动态环境:多样化的场景要求算法具备强泛化能力。
获取与使用
- 访问方式:官网注册并签署协议后可下载,提供mini版(10场景)快速验证。
- 许可:遵循CC BY-NC-SA 4.0协议,需注意学术与商业用途限制。
nuScenes通过其丰富的多模态数据与精细标注,成为评估自动驾驶算法在复杂环境下性能的基准,持续推动行业技术进步。
nuScenes 数据集包含 6类主要传感器,具体配置如下:
传感器类型及数量
-
摄像头(Cameras)
- 数量:6个
- 配置:覆盖360°视野(前、后、左前、右前、左后、右后),分辨率1600×900,采样频率12Hz。
- 用途:提供RGB图像,用于2D/3D物体检测与场景理解。
-
激光雷达(LiDAR)
- 数量:1个
- 配置:32线旋转式雷达,采样频率20Hz,生成高密度点云。
- 用途:3D场景重建、物体检测与跟踪。
-
毫米波雷达(Radars)
- 数量:5个
- 配置:分布在前方及四角,频率13Hz,支持速度测量。
- 用途:运动物体速度估计、多模态融合。
-
定位系统(GPS/IMU)
- 数量:1套(GPS与IMU集成)
- 配置:GPS提供全局定位,IMU测量加速度与角速度。
- 用途:车辆位姿估计、多传感器时空同步。
总数统计
- 总计传感器数量:6(摄像头) + 1(LiDAR) + 5(Radars) + 1(GPS/IMU) = 13个独立传感器。
关键特性
- 多模态同步:所有传感器时间同步且空间标定,支持跨模态数据对齐。
- 覆盖全面:摄像头与雷达组合实现360°无死角感知,LiDAR提供稠密3D信息。
- 高频率采样:最高20Hz(LiDAR),适合动态场景建模。
应用示例
- 多传感器融合:融合LiDAR点云与摄像头图像提升检测鲁棒性。
- 定位与建图:结合GPS/IMU与LiDAR数据生成高精地图。
- 运动预测:利用Radar速度信息分析交通参与者行为。
通过多样化的传感器配置,nuScenes 为自动驾驶算法开发提供了接近真实世界的多模态数据环境。