keras cnn+rnn

# univariate cnn-lstm example
from numpy import array
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import TimeDistributed
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
# define dataset
X = array([[10, 20, 30, 40], [20, 30, 40, 50], [30, 40, 50, 60], [40, 50, 60, 70]])
y = array([50, 60, 70, 80])
# reshape from [samples, timesteps] into [samples, subsequences, timesteps, features]
X = X.reshape((X.shape[0], 2, 2, 1))
# define model
model = Sequential()
model.add(TimeDistributed(Conv1D(filters=64, kernel_size=1, activation='relu'), input_shape=(None, 2, 1)))
model.add(TimeDistributed(MaxPooling1D(pool_size=2)))
model.add(TimeDistributed(Flatten()))
model.add(LSTM(50, activation='relu'))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
# fit model
model.fit(X, y, epochs=500, verbose=0)
# demonstrate prediction
x_input = array([50, 60, 70, 80])
x_input = x_input.reshape((1, 2, 2, 1))
yhat = model.predict(x_input, verbose=0)
print(yhat)

参考链接

### 使用 CNNRNN 模型进行故障诊断的实现方法 #### 卷积神经网络 (CNN) 的应用 基于卷积神经网络的故障诊断模型主要依赖其强大的特征提取能力。该模型通常由多个层次组成,包括但不限于卷积层、池化层以及全连接层[^1]。 - **卷积层**负责从输入数据中提取空间上的局部特征,这些特征可以表示为时间序列中的模式或者图像中的边缘和纹理。 - **池化层**用于降低维度并减少计算复杂度,同时保留最重要的特征信息。 - **全连接层**则将前面各层所学习到的空间关系映射至最终输出类别。 对于实际应用场景而言,例如电力设备故障诊断领域,可以通过收集大量正常状态与异常状态下产生的传感器读数作为训练样本集,并以此构建适合具体需求的CNN架构来进行分类判断[^4]。 以下是采用Python编写的一个简单示例程序片段展示如何定义基本形式下的CNN用于二元分类任务: ```python import tensorflow as tf from tensorflow.keras import layers, models def create_cnn_model(input_shape): model = models.Sequential() # 添加第一个卷积层+最大值池化层组合 model.add(layers.Conv2D(32,(3,3),activation='relu',input_shape=input_shape)) model.add(layers.MaxPooling2D((2,2))) # 可选地增加更多类似的卷积+池化对... # 展平前一层的结果以便送入后续密集层处理 model.add(layers.Flatten()) # 加入若干个完全连通隐藏节点构成的标准MLP部分 model.add(layers.Dense(64, activation='relu')) # 输出层设定取决于目标问题性质;这里假设做的是两类别的区分工作 model.add(layers.Dense(1, activation='sigmoid')) return model ``` #### 循环神经网络 (RNN) 特别是LSTM变体的作用 当面对具有明显顺序特性的时序数据时,循环神经网络特别是其中某些改进版本如长短期记忆单元(LSTM),因其能有效捕捉长时间跨度内的依赖关系而显得尤为重要[^2]。 在工业生产过程中采集得到的时间序列往往蕴含着丰富的动态变化规律,通过引入ELMAN递归神经网络或者其他更先进的机制(像双向LSTM),我们不仅能够更好地理解过去发生的事件对未来的影响趋势,而且还能提高整体系统的鲁棒性和泛化性能。 下面给出一段关于创建基础版单向LSTM模型的例子代码供参考: ```python def build_lstm_model(timesteps, feature_dim): lstm_input = Input(shape=(timesteps,feature_dim,)) x=layers.LSTM(units=50)(lstm_input) out=layers.Dense(1,activation="linear")(x) model=models.Model(inputs=[lstm_input],outputs=out) model.compile(optimizer=tf.optimizers.Adam(),loss='mean_squared_error') return model ``` 以上两段分别展示了针对不同类型的数据结构设计相应的深度学习解决方案思路——无论是侧重静态图片分析还是连续流式监测记录解析均有所涉猎。当然,在真实项目开发当中还需要考虑诸多额外因素诸如超参数调优策略选取、正则项设置防止过拟合现象发生等等细节之处都需要精心规划实施才能取得理想效果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值