block29

本文详细介绍使用Keras构建深度学习模型的过程,包括多GPU配置、数据集读取及预处理,通过定制化的block unit模块实现卷积神经网络,最终完成模型训练与评估。文章深入探讨了模型各层的配置与优化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Dec  3 16:35:49 2018

@author: lg
"""

from keras.layers import Reshape,Convolution2D,PReLU,ZeroPadding2D,BatchNormalization
from keras.layers import AveragePooling2D,Dropout,Dense,GlobalAveragePooling2D
from keras.models import load_model
from keras.models import Model
from keras.layers import Input, Add, Activation, ZeroPadding2D,concatenate
from keras.layers import TimeDistributed,LSTM
import numpy as np
import pandas as pd
import tensorflow as tf
from keras.models import load_model

from mongo_data import data_set


from keras.utils import multi_gpu_model
import config
time_span=config.time_span()
feature=config.feature_number()
gpu_num=config.gpu_number()

input_shape = (time_span, feature, 1)
X_input = Input(input_shape)

def block_unit(filt,x):
    
    conv3=ZeroPadding2D(padding=(1, 1))(x)
    conv3=Convolution2D(filt, 3, 3, border_mode='same',init='glorot_uniform')(conv3)
    #model.add(Activation('relu'))
    l3=PReLU()(conv3)
    l3=BatchNormalization()(l3)

    conv4=ZeroPadding2D(padding=(1, 1))(l3)
    conv4=Convolution2D(filt, 3, 3, border_mode='same',init='glorot_uniform')(conv4)
    #model.add(Activation('relu'))
    l4=PReLU()(conv4)
    l4=BatchNormalization()(l4)

    m4=AveragePooling2D((3, 3), strides=(3, 3))(l4)
    d4=Dropout(0.25)(m4)
    
    return d4


def get_model(X_input):#重新建立模型,与原来不一样的是这里inp是传入
    n_classes = 5
    
    x=block_unit(32,X_input)
    
    x=block_unit(64,x)
    x=block_unit(128,x)
#    x=block_unit(256,x)
    x=GlobalAveragePooling2D()(x)

    x=Dense(1024)(x)
    x=PReLU()(x)
    x=Dropout(0.5)(x)
    x=Dense(1024)(x)
    x=PReLU()(x)
    x=Dropout(0.5)(x)
    x=Dropout(0.5)(x)
    x=Dense(512)(x)
    x=PReLU()(x)
    x=Dropout(0.5)(x)
    result=Dense(n_classes, activation='softmax')(x)


#    result=g
    model=Model(inputs=X_input,outputs=result)
    return model
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值