keras embed  层

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Jul  9 14:39:11 2019

@author: lg
"""

from keras.layers import Dense, Flatten, Input
from keras.layers.embeddings import Embedding
from keras.models import Model
from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import one_hot
# define documents
docs = ['Well done!',
        'Good work',
        'Great effort',
        'nice work',
        'Excellent!',
        'Weak',
        'Poor effort!',
        'not good',
        'poor work',
        'Could have done better.']
# define class labels
labels = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
# integer encode the documents
vocab_size = 50
encoded_docs = [one_hot(d, vocab_size) for d in docs]
print(encoded_docs)
# pad documents to a max length of 4 words
max_length = 4
padded_docs = pad_sequences(encoded_docs, maxlen=max_length, padding='post')
print(padded_docs)
# define the model
input = Input(shape=(4, ))
x = Embedding(vocab_size, 8, input_length=max_length)(input)
x = Flatten()(x)
x = Dense(1, activation='sigmoid')(x)
model = Model(inputs=input, outputs=x)
# compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])
# summarize the model
print(model.summary())

model.fit(padded_docs, labels, epochs=200, verbose=1)
# evaluate the model
loss, accuracy = model.evaluate(padded_docs, labels, verbose=0)
print('Accuracy: %f' % (accuracy * 100))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值