sklearn库中的学习曲线训练得分是一条直线?

🏆 本文收录于《全栈Bug调优(实战版)》专栏,致力于分享我在项目实战过程中遇到的各类Bug及其原因,并提供切实有效的解决方案。无论你是初学者还是经验丰富的开发者,本文将为你指引出一条更高效的Bug修复之路,助你早日登顶,迈向财富自由的梦想🚀!同时,欢迎大家关注、收藏、订阅本专栏,更多精彩内容正在持续更新中。让我们一起进步,Up!Up!Up!
  
备注: 部分问题/难题源自互联网,经过精心筛选和整理,结合数位十多年大厂实战经验资深大佬经验总结所得,数条可行方案供所需之人参考。

📢 原问题描述

原题来源:https://ask.csdn.net/questions/8441552

问题描述:用learning_curve验证训练效果的时候,训练得分是一条一直为1的水平线。请问这样正常吗?

📣 请知悉:如下方案不保证一定适配你的问题!

  如下是针对上述问题进行专业角度剖析答疑,不喜勿喷,仅供参考:

✅️问题理解

在机器学习中,learning_curve函数通常用来展示随着训练样本数增加,模型在训练集和验证集上的表现变化。学习曲线可以帮助我们理解模型是否发生了过拟合或欠拟合。

在你的问题中,训练得分是一条水平线且值为1,说明随着训练数据量的增加,训练集的得分保持不变且为最大值。这种情况通常不正常,特别是当你使用的是一个复杂模型(如目标检测中的深度学习模型),或者你的数据集存在问题时。

✅️问题解决方案

  1. 过拟合问题
    如果你的训练得分一直为1,很可能是模型在训练集上出现了过拟合。这意味着模型已经完全记住了训练数据,无法泛化到新的数据上。在这种情况下,模型训练得分会持续提高,达到1,而验证得分却可能较低,表现为欠拟合。

    • 解决办法

      • 增加数据集的多样性或者增大数据集。
      • 使用正则化(例如L2正则化)来限制模型的复杂度。
      • 使用 dropout 或 batch normalization 等技术来防止过拟合。
      • 调整模型的复杂度,减少参数量或简化模型。
  2. 数据泄漏问题
    如果训练数据集包含了目标信息,或者标签信息的提取有问题,模型可能会过度拟合训练数据,导致得分为1。这是因为模型不需要学习就能准确地预测标签。

    • 解决办法

      • 确保训练集、验证集、测试集之间没有交叉或数据泄漏。
      • 仔细检查数据预处理流程,确保没有标签信息泄露到训练过程中。
  3. 目标检测的特殊问题
    在目标检测任务中,训练得分为1可能表示模型对于目标检测中的标注框(bounding boxes)完全正确。尤其是在小数据集或不复杂的目标检测问题上,模型可能容易过拟合,导致训练得分为1。

    • 解决办法

      • 使用数据增强(如旋转、翻转、缩放等方法)来增加训练集的多样性。
      • 考虑引入更严格的损失函数(如IOU损失),避免仅仅基于目标的分类来评估模型的性能。
  4. 使用正确的评分标准
    你可能使用了不适合的评分标准。如果你使用了精度(accuracy)作为评分标准,而在目标检测任务中使用类别预测准确度可能并不能很好地反映模型的实际效果。可以尝试其他的评价指标,比如平均精度均值(mAP)。

    • 解决办法

      • 在目标检测任务中,使用更合适的评估指标,如mAP(mean Average Precision)等。
      • 确保你在调用learning_curve时选择了适当的评分函数。

✅️问题延伸

  • 调参:如果训练得分为1,可能还需要调整一些超参数,例如学习率、批量大小、训练轮次等。
  • 过拟合的深度学习模型:在深度学习任务中,过拟合是一个常见问题,尤其是在训练数据较少时。通过使用更深的网络、更多的训练数据、正则化等方式来缓解。
  • 目标检测领域的新算法:随着YOLO、SSD等新型算法的发展,目标检测的精度和速度有了较大的提升。因此,学习曲线分析可能会与传统的分类任务有所不同。

✅️问题预测

随着目标检测任务的复杂性增加,训练得分为1的情况可能变得更为常见,特别是在小数据集上。随着数据量的增加,模型训练得分的曲线应该开始下降到一个稳定值,而不是始终保持在1。

如果问题解决后,训练得分会更符合预期,随着数据量的增加,训练得分和验证得分之间的差距会逐渐减小。

✅️小结

训练得分一直为1通常表示过拟合、数据泄漏或评分标准使用不当等问题。解决这些问题的关键在于增加数据多样性、检查数据处理流程、调整模型和参数以及使用合适的评估标准。在目标检测任务中,适当的评价指标和技术将有助于模型性能的提升。

  希望如上措施及解决方案能够帮到有需要的你。

  PS:如若遇到采纳如下方案还是未解决的同学,希望不要抱怨&&急躁,毕竟影响因素众多,我写出来也是希望能够尽最大努力帮助到同类似问题的小伙伴,即把你未解决或者产生新Bug黏贴在评论区,我们大家一起来努力,一起帮你看看,可以不咯。

  若有对当前Bug有与如下提供的方法不一致,有个不情之请,希望你能把你的新思路或新方法分享到评论区,一起学习,目的就是帮助更多所需要的同学,正所谓「赠人玫瑰,手留余香」。

🧧🧧 文末福利,等你来拿!🧧🧧

  如上问题有的来自我自身项目开发,有的收集网站,有的来自读者…如有侵权,立马删除。再者,针对此专栏中部分问题及其问题的解答思路或步骤等,存在少部分搜集于全网社区及人工智能问答等渠道,若最后实在是没能帮助到你,还望见谅!并非所有的解答都能解决每个人的问题,在此希望屏幕前的你能够给予宝贵的理解,而不是立刻指责或者抱怨!如果你有更优解,那建议你出教程写方案,一同学习!共同进步。

  ok,以上就是我这期的Bug修复内容啦,如果还想查找更多解决方案,你可以看看我专门收集Bug及提供解决方案的专栏《全栈Bug调优(实战版)》,都是实战中碰到的Bug,希望对你有所帮助。到此,咱们下期拜拜。

码字不易,如果这篇文章对你有所帮助,帮忙给 bug菌 来个一键三连(关注、点赞、收藏) ,您的支持就是我坚持写作分享知识点传播技术的最大动力。

同时也推荐大家关注我的硬核公众号:「猿圈奇妙屋」 ;以第一手学习bug菌的首发干货,不仅能学习更多技术硬货,还可白嫖最新BAT大厂面试真题、4000G Pdf技术书籍、万份简历/PPT模板、技术文章Markdown文档等海量资料,你想要的我都有!

🫵 Who am I?

我是bug菌,CSDN | 掘金 | InfoQ | 51CTO | 华为云 | 阿里云 | 腾讯云 等社区博客专家,C站博客之星Top30,华为云多年度十佳博主,掘金多年度人气作者Top40,掘金等各大社区平台签约作者,51CTO年度博主Top12,掘金/InfoQ/51CTO等社区优质创作者;全网粉丝合计 30w+;更多精彩福利点击这里;硬核微信公众号「猿圈奇妙屋」,欢迎你的加入!免费白嫖最新BAT互联网公司面试真题、4000G PDF电子书籍、简历模板等海量资料,你想要的我都有,关键是你不来拿。

-End-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bug菌¹

你的鼓励将是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值