VAE-LSTM用python跑不通,如何解决?

🏆本文收录于 《全栈Bug调优(实战版)》 专栏,该专栏专注于分享我在真实项目开发中遇到的各类疑难Bug及其深层成因,并系统提供高效、可复现的解决思路和实操方案。无论你是刚入行的新手开发者,还是拥有多年项目经验的资深工程师,本专栏都将为你提供一条系统化、高质量的问题排查与优化路径,助力你加速成长,攻克技术壁垒,迈向技术价值最大化与职业发展的更高峰🚀!
  
📌 特别说明: 文中部分技术问题来源于真实生产环境及网络公开案例,均经过精挑细选与系统化整理,并结合多位一线资深架构师和工程师多年实战经验沉淀,提炼出多种经过验证的高可行性解决方案,供开发者们参考与借鉴。
  
欢迎 关注、收藏并订阅本专栏,持续更新的干货内容将与您同行,让我们携手精进,技术跃迁,步步高升!

📢 问题描述

问题来源:https://ask.csdn.net/questions/8434310

问题描述:VAE-LS

### 使用PyTorch实现VAE-LSTM模型 #### VAE-LSTM简介 变分自编码器(Variational Autoencoder, VAE)是一种生成模型,能够学习到输入数据的概率分布并可以用来生成新的样本。当与LSTM相结合形成VAE-LSTM时,则可以在处理序列数据的同时利用变分推断的思想捕捉潜在空间中的不确定性。 为了构建这样的网络结构,在编码阶段会先由LSTM提取特征,并将其映射至两个向量——表示均值μ和对数方差logσ²;解码部分同样基于LSTM架构完成重建工作。特别之处在于引入重参数化技巧使得训练过程可微分[^4]。 以下是具体实现方法: ```python import torch from torch import nn, optim import numpy as np class VAELSTM(nn.Module): def __init__(self, input_size, hidden_size, latent_dim): super(VAELSTM, self).__init__() # 编码器定义 self.encoder_lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=1, batch_first=True) self.fc_mu = nn.Linear(hidden_size, latent_dim) self.fc_logvar = nn.Linear(hidden_size, latent_dim) # 解码器定义 self.decoder_fc = nn.Linear(latent_dim, hidden_size) self.decoder_lstm = nn.LSTM(input_size=latent_dim + input_size, hidden_size=hidden_size, num_layers=1, batch_first=True) self.output_layer = nn.Linear(hidden_size, input_size) def encode(self, x): _, (h_n, _) = self.encoder_lstm(x) # 获取最后一个时刻的状态作为隐状态 h_n = h_n.squeeze(0) mu = self.fc_mu(h_n) log_var = self.fc_logvar(h_n) return mu, log_var @staticmethod def reparameterize(mu, log_var): std = torch.exp(0.5 * log_var) eps = torch.randn_like(std) z = mu + eps * std return z def decode(self, z, condition=None): if condition is not None: dec_input = torch.cat([z.unsqueeze(dim=1).repeat((1,x.shape[1],1)),condition],dim=-1) else: dec_input=z.unsqueeze(dim=1).expand(-1,x.size()[1],-1) output,(hn,cn)=self.decoder_lstm(dec_input) recon_x=self.output_layer(output) return recon_x def loss_function(recon_x, x, mu, log_var): BCE_loss = nn.functional.binary_cross_entropy_with_logits( recon_x.view(-1, recon_x.size(-1)), x.view(-1, x.size(-1)), reduction='sum' ) KLD_weight = 0.00025 KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp()) return BCE_loss + KLD_weight*KLD ``` 此代码片段展示了如何创建一个简单的VAE-LSTM类以及相应的损失函数计算方式。注意这里的`reparameterize()`静态方法实现了上述提到的重参数化技术以便于BP算法更新权重参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bug菌¹

你的鼓励将是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值