### 使用PyTorch实现VAE-LSTM模型
#### VAE-LSTM简介
变分自编码器(Variational Autoencoder, VAE)是一种生成模型,能够学习到输入数据的概率分布并可以用来生成新的样本。当与LSTM相结合形成VAE-LSTM时,则可以在处理序列数据的同时利用变分推断的思想捕捉潜在空间中的不确定性。
为了构建这样的网络结构,在编码阶段会先由LSTM提取特征,并将其映射至两个向量——表示均值μ和对数方差logσ²;解码部分同样基于LSTM架构完成重建工作。特别之处在于引入重参数化技巧使得训练过程可微分[^4]。
以下是具体实现方法:
```python
import torch
from torch import nn, optim
import numpy as np
class VAELSTM(nn.Module):
def __init__(self, input_size, hidden_size, latent_dim):
super(VAELSTM, self).__init__()
# 编码器定义
self.encoder_lstm = nn.LSTM(input_size=input_size,
hidden_size=hidden_size,
num_layers=1,
batch_first=True)
self.fc_mu = nn.Linear(hidden_size, latent_dim)
self.fc_logvar = nn.Linear(hidden_size, latent_dim)
# 解码器定义
self.decoder_fc = nn.Linear(latent_dim, hidden_size)
self.decoder_lstm = nn.LSTM(input_size=latent_dim + input_size,
hidden_size=hidden_size,
num_layers=1,
batch_first=True)
self.output_layer = nn.Linear(hidden_size, input_size)
def encode(self, x):
_, (h_n, _) = self.encoder_lstm(x) # 获取最后一个时刻的状态作为隐状态
h_n = h_n.squeeze(0)
mu = self.fc_mu(h_n)
log_var = self.fc_logvar(h_n)
return mu, log_var
@staticmethod
def reparameterize(mu, log_var):
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
z = mu + eps * std
return z
def decode(self, z, condition=None):
if condition is not None:
dec_input = torch.cat([z.unsqueeze(dim=1).repeat((1,x.shape[1],1)),condition],dim=-1)
else:
dec_input=z.unsqueeze(dim=1).expand(-1,x.size()[1],-1)
output,(hn,cn)=self.decoder_lstm(dec_input)
recon_x=self.output_layer(output)
return recon_x
def loss_function(recon_x, x, mu, log_var):
BCE_loss = nn.functional.binary_cross_entropy_with_logits(
recon_x.view(-1, recon_x.size(-1)),
x.view(-1, x.size(-1)),
reduction='sum'
)
KLD_weight = 0.00025
KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
return BCE_loss + KLD_weight*KLD
```
此代码片段展示了如何创建一个简单的VAE-LSTM类以及相应的损失函数计算方式。注意这里的`reparameterize()`静态方法实现了上述提到的重参数化技术以便于BP算法更新权重参数。