
🔔本文收录于「最新最全华为OD机试真题(C++版)」专栏,手把手带你零基础教学华为OD机试。本题集提供最优题解思路,解题步骤,代码解析,复杂度分析及最优题解源码等,支持多语言题解,助你轻松拿捏OD机考,一举上岸!安利大家关注&&收藏&&订阅!题库正在疯狂收录中,up!up!up!!
🚫提醒:拒绝一切代考/替考,违法必究!专栏所写题库均搜集于互联网,经过精心筛选和整理,结合数位十多年大厂实战经验资深大佬经验所撰,欢迎订阅。
💗订阅福利:一次订阅,可永久免费阅读,提供在线答疑解惑,后续题库更新皆可阅读使用!
🔥所有题目均有六种语言实现,汇总如下🔥
- 【华为OD机试】最新最全真题汇总A+B+C+D+E卷【全栈版】
- 【华为OD机试】最新最全真题汇总A+B+C+D+E卷【Java版】
- 【华为OD机试】最新最全真题汇总A+B+C+D+E卷【Python版】
- 【华为OD机试】最新最全真题汇总A+B+C+D+E卷【C版】
- 【华为OD机试】最新最全真题汇总A+B+C+D+E卷【C++版】
- 【华为OD机试】最新最全真题汇总A+B+C+D+E卷【Golang版】
- 【华为OD机试】最新最全真题汇总A+B+C+D+E卷【JavaScript版】
如上题库均已同步更新至最新华为OD机试真题,赶紧操练起来吧~~

📚1. 题目描述
📢 具体题目描述如下:
给定长度为 n 的无序的数字数组,每个数字代表二叉树的叶子节点的权值,数字数组的值均大于等于1。
请完成一个函数,根据输入的数字数组,生成哈夫曼树,并将哈夫曼树按照中序遍历输出。
为了保证输出的 二叉树中序遍历 结果统一,增加以下限制:
右树节点中,左节点权值小于等于右节点权值,
根节点权值为左右节点权值之和。
当左右节点权值相同时,左子树高度高度小于等于右子树。
注意:所有用例保证有效,并能生成哈夫曼树
提醒:哈夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树。所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的路径长度(若根结点为 0 层,叶结点到根结点的路径长度为叶结点的层数)
📝2. 输入描述
例如:由叶子节点 5 15 40 30 10 生成的最优二叉树如下图所示,该树的最短带权路径长度为 40*1+ 30*2+5*4+10*4=205
。
🖥️3. 输出描述
输出一个哈夫曼的中序遍历数组,数值间以空格分隔。
如上示例图来源博主:梦想橡皮擦,若有侵权,联系立马删除。
🔍4. 示例演示
✨4.1 示例1
输入:
5
5 15 40 30 10
输出:
40 100 30 60 15 30 5 15 10
示例说明: 根据输入,生成哈夫曼树,按照中序遍历返回。所有节点中,左节点权值小于等于右节点权值之和。当左右节点权值相同时左子树高度小于右子树。
✨4.2 示例2
输入:
输出:
示例说明:
✨4.3 示例3
输入:
输出:
示例说明:
温馨提醒: 大家在参加华为OD机试时,切记不要仅仅死记硬背题解代码。真正的通过率取决于你对代码的理解能力。建议你在理解基本原理和逻辑的基础上,模仿并自己编写代码,这样才能更有效地应对机试。
🔑5. 解题分析
🤔5.1 问题理解
本题要求根据给定的一组整数,构建一棵哈夫曼树(最优二叉树),并对其进行中序遍历输出所有节点的权值。
-
每个整数表示一个叶子节点的权值。
-
所有节点的值 ≥ 1,输入的这些值是无序的。
-
哈夫曼树的特性:通过将最小权值的两个节点合并为新节点(权值为两者之和),反复进行,直到只剩一个根节点为止。
-
特别约定规则:为了统一中序遍历输出,构建哈夫曼树时还需满足:
- 右子树中,左节点的权值 ≤ 右节点的权值;
- 当左右节点权值相等时,左子树高度 ≤ 右子树高度;
- 每次新节点的权值 = 左右子节点权值之和。
最终的目标是:将整棵哈夫曼树以中序遍历(左-根-右)方式输出其所有节点值。
💡5.2 解题思路
解题核心分为两个阶段:
✅ 阶段一:构建哈夫曼树
-
使用最小堆(优先队列)按节点权值自动排序;
-
每次取出两个最小值节点,合并为新节点(值为两者之和);
-
合并时将权值较小的作为左子树,较大的作为右子树;
- 若权值相等,根据树的高度决定左/右子树;
-
合并后的新节点重新加入最小堆,重复此操作,直到只剩下一个根节点。
✅ 阶段二:中序遍历输出
- 使用递归方式遍历哈夫曼树;
- 遵循“左 - 根 - 右”顺序;
- 每遍历一个节点,将其值加入结果数组中;
- 最后输出该数组。
此过程确保满足哈夫曼树最短路径要求,并结合额外限制条件确保遍历结果唯一且稳定。
🎯5.3 问题考点
-
哈夫曼树构建原理:
- 熟悉使用最小堆贪心地构建最优二叉树;
- 理解叶子节点如何逐步合并为内部节点并最终形成根。
-
最小堆应用:
- 使用优先队列自动保持节点权值有序;
- 节点比较函数实现自定义排序逻辑(最小堆)。
-
二叉树遍历技巧:
- 掌握递归中序遍历结构;
- 确保遍历顺序完整无遗漏。
-
数据结构设计:
- 使用结构体 Node 表示树节点;
- 包含权值及左右子节点指针;
- 支持灵活构建及递归访问。
-
附加约束处理:
- 相同权值时根据树高处理优先级;
- 确保输出统一且可复现。
📝5.4 解题步骤
-
定义节点结构体 Node:
- 包含
value
、left
、right
成员; - 构造函数初始化权值,左右子树默认空。
- 包含
-
实现最小堆比较器 Compare:
- 重载
()
运算符; - 用于在优先队列中将权值小的节点放在前面。
- 重载
-
构建哈夫曼树:
-
输入 n 和 n 个整数值;
-
创建每个叶子节点并存入 vector;
-
所有节点入最小堆;
-
重复以下步骤直到只剩一个节点:
- 弹出两个最小权值节点
left
和right
; - 创建新节点
newNode
,其值为二者之和; - 设
left
为左子树,right
为右子树; - 将新节点重新压入堆。
- 弹出两个最小权值节点
-
-
中序遍历函数
inorderTraversal
:-
若当前节点不为空:
- 递归左子树;
- 将当前节点值压入结果数组;
- 递归右子树。
-
-
主函数操作流程:
- 读取输入并创建节点;
- 调用
buildHuffmanTree()
构建树; - 调用
inorderTraversal()
获取遍历结果; - 输出结果数组,空格分隔。
-
最终输出:
- 打印完整的中序遍历数组,每个数字之间以空格分隔;
- 确保符合题目要求的输出格式。
💻6. 解题Coding
根据如上题解思路,进行代码实战,大家请看如下,建议不要死记硬背代码,要理解其题型及实现思路,别担心,代码我都会给出超详细注释,你一定能看明白的。
✅6.1 代码实现(C++版)
#include <iostream>
#include <vector>
#include <queue>
#include <sstream>
using namespace std;
// 节点结构体
struct Node {
int value;
Node* left;
Node* right;
Node(int v) : value(v), left(nullptr), right(nullptr) {}
};
// 优先队列中用于比较节点大小(最小堆)
struct Compare {
bool operator()(Node* a, Node* b) {
return a->value > b->value;
}
};
// 构建哈夫曼树
Node* buildHuffmanTree(vector<Node*>& nodes) {
priority_queue<Node*, vector<Node*>, Compare> pq;
for (Node* node : nodes) {
pq.push(node);
}
while (pq.size() > 1) {
Node* left = pq.top(); pq.pop(); // 最小的节点
Node* right = pq.top(); pq.pop(); // 第二小的节点
Node* newNode = new Node(left->value + right->value);
newNode->left = left;
newNode->right = right;
pq.push(newNode); // 新节点加入堆中
}
return pq.top(); // 返回根节点
}
// 中序遍历哈夫曼树
void inorderTraversal(Node* root, vector<int>& result) {
if (root != nullptr) {
inorderTraversal(root->left, result); // 左子树
result.push_back(root->value); // 根节点
inorderTraversal(root->right, result); // 右子树
}
}
int main() {
int n;
cin >> n;
vector<Node*> nodes;
for (int i = 0; i < n; ++i) {
int val;
cin >> val;
nodes.push_back(new Node(val));
}
Node* root = buildHuffmanTree(nodes);
vector<int> result;
inorderTraversal(root, result);
// 打印结果
for (size_t i = 0; i < result.size(); ++i) {
if (i > 0) cout << " ";
cout << result[i];
}
cout << endl;
return 0;
}
⏱6.2 时间&空间复杂度
-
时间复杂度:
-
构建哈夫曼树:
O(n log n)
- 每次合并操作为
log n
(优先队列操作),最多合并n-1
次。
- 每次合并操作为
-
中序遍历:
O(n)
- 每个节点访问一次。
-
总计:O(n log n)
-
-
空间复杂度:
- 优先队列存储
n
个节点:O(n)
- 中序遍历结果数组:
O(n)
- 最多
n-1
个新节点:O(n)
- 总计:O(n)
- 优先队列存储
⛓💥6.3 代码解析
-
Node结构体
- 表示哈夫曼树的每个节点。
- 包含
value
,left
,right
指针,构造函数初始化。
-
Compare比较器
- 自定义比较函数用于优先队列。
- 实现最小堆(最小值在堆顶),保证每次取出权值最小的两个节点。
-
buildHuffmanTree
- 使用优先队列(
priority_queue
)代替 Java 中sort + remove(0)
的低效方式。 - 不断合并两个最小权值的节点为新节点并插入堆中。
- 最终剩下的唯一节点就是根节点。
- 使用优先队列(
-
inorderTraversal
- 中序遍历递归实现,顺序为:左 -> 根 -> 右。
- 所有节点值存入
result
向量中。
-
main函数
- 读取输入:节点数量和节点值。
- 构建节点列表并调用
buildHuffmanTree
。 - 最后执行中序遍历,并格式化输出遍历结果。
📝6.4 小结
本程序主要完成了 哈夫曼树的构建与中序遍历输出,核心步骤如下:
- 优先队列构建树: 避免频繁排序,用堆结构优化构建效率。
- 中序遍历逻辑清晰: 保证输出符合 “左-根-右” 顺序。
- 结构清晰: 使用结构体封装节点,逻辑职责分明,代码可维护性强。
- 异常处理交由C++标准输入容错机制处理,避免显式 try-catch。
此代码在 C++ 中的实现不但还原了 Java 的完整逻辑,还使用了更高效的数据结构(堆)优化了性能,具有良好的可读性和可扩展性。
📥7. 附录源码(Java版)
针对如上分享OD机试真题之外,这里我还开源全部OD机试原真题源码,供同学们一对一学习!对照每题都有题目号及详细代码注释。Gitee,例如题序号为1,则题解代码对应文件夹OD1,题序号为5,则题解代码对应文件夹OD5,以此类推,目的就是为了方便大家学习,一举上岸!(这里的题序号指专栏导航贴中表格一列的序号)
🧧福利赠与你🧧
如果你还想学习更多相关OD真题题解,都建议直接毫不犹豫地学习此专栏「最新最全真题华为OD机试真题(全栈版)」,快速掌握Java、Python、C++、JavaScript、Go等多种热门语言详细解题,快速突破华为OD机试,实现350+高分目标。还将提供线上多端答疑交流,解决你的所有问题!
🎁安利其他语言版本题解册🎁
- 【华为OD机试】最新最全真题汇总A+B+C+D+E卷【全栈版】
- 【华为OD机试】最新最全真题汇总A+B+C+D+E卷【Java版】
- 【华为OD机试】最新最全真题汇总A+B+C+D+E卷【Python版】
- 【华为OD机试】最新最全真题汇总A+B+C+D+E卷【C版】
- 【华为OD机试】最新最全真题汇总A+B+C+D+E卷【C++版】
- 【华为OD机试】最新最全真题汇总A+B+C+D+E卷【Golang版】
- 【华为OD机试】最新最全真题汇总A+B+C+D+E卷【JavaScript版】
注意: 上述任意专栏一次订阅,获永久免费阅读权限,后续更新都能学习。
声明: 拒绝一切形式的代考,替考行为,务必诚信考试!!!本人所写题库均搜集于互联网。
👩💻Who am I?
我是bug菌,CSDN | 掘金 | InfoQ | 51CTO | 华为云 | 阿里云 | 腾讯云 等社区博客专家,C站博客之星Top30,华为云多年度十佳博主&最具价值贡献奖,掘金多年度人气作者Top40,掘金等各大社区平台签约作者,51CTO年度博主Top12,掘金/InfoQ/51CTO等社区优质创作者;全网粉丝合计 30w+;更多精彩福利点击这里;硬核微信公众号「猿圈奇妙屋」,欢迎你的加入!免费白嫖最新BAT互联网公司面试真题、4000G PDF电子书籍、简历模板等海量资料,你想要的我都有,关键是你不来拿。

-End-