论文笔记27 -- (视频压缩)Learned Video Codec with Enriched Reconstruction for CLIC P-frame Coding

这篇2020年的研究论文提出了一种创新的视频编码框架,利用深度学习的Refine-Net和ME-Net技术,专注于残差信号和运动矢量编码,并在CLICP-frameChallenge中通过完美参考帧展示了其高性能。实验结果显示,该编解码器在MS-SSIM质量评估上具有竞争力,挑战前列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Learned Video Codec with Enriched Reconstruction for CLIC P-frame Coding 》

20年12月提交在arXiv上的一篇paper,一个新的基于深度学习的端到端视频编解码框架,看到有大佬已经解读,跟着学习一下!!!大佬的解读点这里

论文点这里

David Alexandre, Hsueh-Ming Hang
Dept. of Electronics Engineering, National Chiao Tung University, Taiwan

Abstract

本文提出了一种基于学习的视频编解码框架。具体地说,设计了带有Refine-Net的压缩网络,用于编码残差信号和运动矢量。此外,对于运动估计,引入了基于注意力的分层ME-Net。为了验证设计,对模块和不同的输入格式进行了消融实验。其视频编解码器通过在CLIC P-frame Challenge指定的解码器端使用完美参考帧来证明其性能。实验结果表明,在质量指标方面(MS-SSIM),提出的编解码器与Challenge的前排对比也非常有竞争力。

1. INTRODUCTION

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值