人工智能在兽医学中的应用

小罗碎碎念

团队新增了一个【动物医学AI组】,下周二晚上7点(暂定)会由团队的李教授(吉林大学)和我们分享她关于动医AI的研究与探索;因此今天准备了此推送,方便大家了解一些背景知识,欢迎对这一方面的同学和老师加入我们!

这篇发表于2025年的文章系统梳理了人工智能在兽医学领域的应用现状与发展潜力,为医学AI研究者提供了跨物种医疗技术转化的重要参考。

image-20250727170549706

文章首先追溯了AI在兽医学中的发展背景,指出其核心技术基础可追溯至70年前的早期AI原理,而现代应用则依托近十年计算能力提升与数据可用性增长,尤其在影像诊断、基因组分析等领域展现出显著优势。

人工智能的类型及其潜在作用

文中强调,兽用AI目前以狭义人工智能(Narrow AI)为主,聚焦特定任务如犬类胸腔异常检测、骨肉瘤预后预测等,通过机器学习算法处理放射影像、基因序列等多模态数据,实现诊断效率提升与治疗精准化。

人工智能在兽医医学影像与诊断中的整合

文章深入剖析了AI在兽医学关键场景的技术落地路径,涵盖诊断、治疗、防控等全链条。在诊断领域,AI通过放射组学(Radiomics)技术从CT、MRI、超声等影像中提取人类视觉难以捕捉的定量特征,结合卷积神经网络(CNN)等模型实现疾病早期识别,例如在犬类左心房扩大检测中展现出可靠的区分能力。

医学影像模态比较:超声、计算机断层扫描与磁共振成像

在疾病防控方面,AI不仅通过自然语言处理(NLP)模型预测流感病毒宿主范围,还借助机器学习构建 zoonotic 疾病预警系统,整合卫星影像、电子健康记录等数据实现疫情实时追踪与风险评估。

此外,文中重点介绍了AI在个性化医疗中的应用,通过整合遗传数据与临床信息优化治疗方案,在慢性疾病管理中实现生物标志物动态监测,显著提升治疗响应效率。

传统的试错法与人工智能机器学习模型


交流群

欢迎大家加入【医学AI】交流群,本群设立的初衷是提供交流平台,方便大家后续课题合作。

目前小罗全平台关注量71,000+,交流群总成员1600+,大部分来自国内外顶尖院校/医院,期待您的加入!!

由于近期入群推销人员较多,已开启入群验证,扫码添加我的联系方式,备注姓名-单位-科室/专业,即可邀您入群


罗小罗团队

我们是一支以国内外硕博为主的学生团体,覆盖医学AI主流研究领域;团队现有50余人,持续欢迎新的小伙伴加入!

团队官网上传了大量优质的学习资料,包括但不限于每次免费公开课的回放,顶刊复现教程等等!

感兴趣的可以扫码或者点击链接访问我们团队的官网:https://www.lxltx.site/


一、引言

人工智能(Artificial intelligence,AI)是计算机科学中一个新兴的领域,能够执行类似于人类智能的任务。

人工智能(一个数字大脑)是一个非常复杂的计算机程序,它模仿人类以及灵长类动物(科纳尔,2018年)的学习和解决问题的能力。

人工智能是当代世界一项革命性的技术,它让生活变得更轻松。人工智能有激发潜力来提升我们日常生活和职业生涯的能力,但它也带来了一些合理的担忧(徐等人,2021年)。

人工智能作为一个科学领域于1956年发展起来,并发展出了一系列方法,如模拟、模仿人类推理、逻辑方法、知识表示模型以及行为模仿等。

人工智能作为一个独特学术领域的正式创立可以追溯到1956年6月,当时约翰·麦卡锡创造了“人工智能”这个术语。在很长一段时间里,它都是一个规模相对较小的科学事业,在不久之前的很长一段时间里,它提供的现实世界解决方案相对较少(陆,2019年)。


兽医学是一个非常广泛的领域,涉及动物健康领域,特别是伴侣动物的健康,以及与动物源性疾病相关的公共或群体健康。

另一方面,人工智能对许多科学主题都有影响,如哲学、神经科学、控制论、控制理论、数据科学和计算机工程。

虽然这两个已确定领域的交叉既广泛又在不断扩大,但两者的融合可能蕴含着相互合作的可能性(阿卜杜勒拉扎克等人,2024年)。

人工智能在人类和动物医疗保健领域取得的巨大且有前景的成就以及可能的展望令人振奋。人工智能进入动物医疗保健领域带来了新的前景,旨在提高宠物和医护人员的生活质量。

然而,由于研究的快速发展和产品产业化的不确定性,这些有前景的潜力也带来了挑战,特别是在衡量、理解和接受这种有影响力的创新技术方面(沙欣,2022年)。


兽医学正在经历一场重大且不稳定的技术变革,如果能恰当地利用,通过在畜牧管理和动物健康监测中应用人工智能,有可能给畜牧业带来变革,如图1所示。

人工智能在畜牧业管理与动物健康监测中的应用

目前普通兽医不了解计算机编程,无法恰当地使用和实施人工智能,因为采用技术类似于在实践中引入新的诊断工具。

兽医对抗原、抗体和酶联免疫吸附测定(ELISA)检测有足够的了解,能够在诊所熟练使用快速检测(SNAP)试验(欧阳,2021年)。

人们通常对通过计算机算法诊断的疾病一无所知。在这个知识领域,兽医需要一些基本的认知来评估人工智能作为潜在益处和弊端的可能性。

应该指出的是,目前人工智能仍处于早期阶段,未来可能会对我们的职业产生一定影响。兽医职业要求他们了解人工智能的潜力和局限性(斯托克姆和斯科特,2024年)。本章的目的是讨论人工智能的定义、其优缺点以及执业兽医使用它的建议。


二、人工智能的背景

人工智能的原理至少可以追溯到70年前,与此同时,大多数现代人工智能应用的历史不超过十年。

在20世纪40年代末和50年代初,科学界首次了解到人工智能的原理。一位名叫艾伦·图灵的英国计算机科学家在1950年首次提出计算机进行智能活动的想法。

之后,约翰·麦卡锡在1955年创造了“人工智能”这个术语(耶格和达科罗尼亚,2024年)。兽医学中人工智能的整体历史如表1所示。

表1:医学中人工智能简史


在过去几年里,由于在疾病诊断和治疗方面增强的机器人能力,人工智能已成功应用于兽医领域。

在兽医学中,这种人工智能机器人能力可能包括放射学影像(x光、计算机断层扫描、磁共振成像)、细胞学和组织学切片,以及笔记和记录文档(文本和数字数据,如实验室结果)。

在兽医学中,它以分析的形式存在,利用计算机算法分析大量数据以改善诊断、治疗并提高患者治疗效果。

因此,我们用于分析和运用这些信息的方法会根据人工智能系统的总体目标而有所不同(阿里等人,2024年)。


三、兽医学中人工智能的类型

第一种人工智能分类是基于能力和广泛性。

类人认知也被称为通用人工智能或强人工智能。超级智能是一种人工智能,其智力水平高于人类大脑。

尽管考虑到这些人工智能类型在电影和电视节目中的形象,它们会带来不少恐惧,但它们确实存在,而且其风险往往是外部的而非内部的(博斯等人,2024年)。

目前,计算机正不断发展成为更先进和创新的系统。一些分析人士认为,这种人工智能可能不会出现。人工智能手段通常是为执行某些特定功能而构建的,比如行走、说话、思考以及回应听到的指令。


在医学领域,它们可能为一些科学问题提供某些解决方案(吉尔等人,2024年)。

在兽医学中使用的人工智能技术被称为狭义人工智能。这些人工智能是为特定任务设计的,由于它们只能执行单一任务,所以被称为有限或弱人工智能。

医学实践中的一个例子是在X光影像上检测异常。这些困难表明,尽管艰巨任务涉及大量数据(数百张X光照片),但这类系统在智能方面相对有限甚至较差(阿金苏利等人,2024年)。

图2讨论了人工智能的类型及其潜在作用。

图2:人工智能的类型及其潜在作用


四、人工智能在兽医诊断成像中的应用

数字技术对兽医护理的影响几乎是无穷无尽的。

在诊断、伴侣动物护理、转向兽医研究和教育等背景下,利用人工智能改变兽医实践的可能性似乎几乎是无限的。

应用人工智能的兽医诊断成像旨在识别、划分和分类图像特征,如图3所示。

图3:人工智能在兽医医学成像和诊断中的整合

例如,在检查的照片中可能会看到一些失真,比如肺结节的存在。分割可以勾勒出图像中的特征,比如结节的周长(布莱尔,2024年)。

同样,放射技师以及其他兽医人员也可以应用检测、分割和分类算法。这类应用程序可以为人工智能识别出问题的照片提供快速说明,或者协助对患者进行优先级排序以便对重症病例进行快速治疗。

通过在患者记录和电子健康管理中运用人工智能技术,兽医护理人员会发现他们的工作负担更轻,任务完成得更快。当与诊断设备一起使用时,这些工具可以识别或分类疾病,以帮助兽医进行诊断(卡里米,2024年)。

虽然有一些用于兽医诊断成像的商业人工智能系统尚未经过同行评审。到目前为止,绝大多数经过同行评审的用于兽医成像的人工智能应用都集中在证明人工智能能够可靠地识别犬类胸部的异常情况(塞缪尔等人,2021年)。


五、人工智能与放射组学在兽医学中的应用

人工智能有可能通过重塑治疗方式和改善动物福利来彻底改变兽医学。

放射成像是精准医学中一个相对较新的医学成像分支,它采用复杂的数学算法进行量化。这意味着医学图像包含了人类难以察觉的与疾病相关过程的信息(巴斯兰和波特,2022年)。

放射组学是从图像中挖掘大量特征并将其转化为定量信息的过程。当使用复杂和先进的统计技术分析这些数据时,就形成了发展个性化精准医学的需求。

放射成像出现在各种医学成像模式中,如计算机断层扫描、磁共振成像、正电子发射断层扫描和超声检查(图4)。

图4:医学成像模式的比较:超声、CT和MRI

通过构建应用当前数据和结果的算法,机器学习作为人工智能的一个重要子领域,通过进行准确预测做出了重大贡献(霍斯尼等人,2018年)。

兽医学中的人工智能包括定量和预测性流行病学以及针对人类和动物的精准医学,还有宿主 - 寄生虫关系。

在诊断领域,人工智能可以协助疾病检测,人工智能在其中具有较小的误差范围、多个生物系统之间的关系、多个问题的解决方案、风险评估以及针对特定目标的定制药物(埃扎诺等人,2021年)。


六、利用人工智能实现从诊断到治疗的个性化兽医护理

在为患者确定合适的治疗方案之前,人工智能可用于诊断基因数据和医学影像。

这可能会减少传染病的传播,如图5所示,因为它能提高诊断的准确性和速度。

图5:兽医专业的一刀切治疗与人工智能辅助的个性化治疗

人工智能在疾病的正确诊断中很重要,因为它利用计算机学习和对各种医学数据库(如放射学和临床信息)进行复杂分析,以制定成功的治疗方案(阿卜杜拉等人,2023年)。

由于涉及定量和预测性流行病学分析以及人畜健康的宿主-病原体相互作用等具有挑战性的任务,在动物治疗中应始终采用人工智能方法。

借助人工智能进行的每周检查,有机会持续观察生物标志物有潜在恶化趋势的患者。这在慢性病中更为关键,因为它能确保早期干预,从而为患者提供更好的治疗(哈通,2023年)。

目前,有各种举措将人工智能和放射组学引入临床实践,作为支持决策的辅助手段,并成为日常临床工作的组成部分,以进一步提高诊断的敏感性、准确性和可重复性。

一种称为“放射组学”的医学影像定量方法,通过使用数学中复杂且常常相互矛盾的计算,最大限度地分析信息(戈帕拉克里希南等人,2023年)。


七、用于人畜共患病监测的人工智能

在人畜共患病的监测和追踪方面,人工智能技术具有取得重大成功的巨大潜力。

医学和兽医学领域的AI\mathrm{{AI}}AI进步,有望解决与人畜共患病增加相关的问题。

将人工智能技术与基于机器学习和复杂算法模型的更传统疾病控制措施同步结合,为人畜共患病影响的识别、分析和管理揭示了新的可能性(张等人,2024年)。

一些人工智能风险模型可以帮助预测重要指标,并计算患者及时被诊断出疾病的概率。一些人工智能算法已被用于预测宿主范围易感性和病毒宿主。

预测流感病毒的宿主范围涉及使用像Wordzvec这样的自然语言处理模型,对从病毒核苷酸和蛋白质序列获得的向量属性进行分析。

其目的是协助选择未来研究的高风险病毒株,以及评估新出现的流感病毒如果发展出人际传播能力所带来的出现或危险(考尔等人,2022年)。


八、人工智能在疾病监测和流行病学中的应用

人工智能被用于兽医学领域的各种疾病诊断和治疗,并帮助研究科学家和兽医识别可能呈阳性的样本或病例。

人工智能已被广泛用于动物疾病和营养疾病的分析,以便从身体样本或病例中获取最大信息(穆纳甘德拉等人,2024年)。

近年来设计的两个系统包括PADI-web,它是一种与在线/基于网络的系统集成的机器学习算法,另一个是用于新兴动物疾病早期诊断的生物监测系统。

此外,机器学习技术也被用于评估基因组和流行病学数据的同时使用情况,以早期发现和报告食源性或水源性疾病。

人工智能在兽医学的疾病流行病学和监测中一直发挥着重要作用(王等人,2019年)。


九、机器学习在动物健康监测中的应用

机器学习在构建动物健康监测模型中至关重要。

例如,当一个人能够识别出使特定农场易感染某种特定病毒的风险因素时,那么在给定病毒的情况下就可以很容易地识别出这些因素。这是从以前的病例表现和一系列潜在风险因素中获得的(内瑟拉詹,2020年)。

在加拿大,机器学习模型已应用于猪流行性腹泻病毒(PEDV),该模型用于预测疾病的未来趋势。它还被用于分析宿主对疾病的易感性。它也被用于临床调查过程中基因组测序数据的分析和解释。

使用传统方法处理庞大、复杂的结构和关系可能并不容易,因此机器学习可能更可取(巴拉甘-蒙特罗等人,2021年)。全基因组测序(WGS)分析中的机器学习可改善溯源、致病性评估、抗生素耐药表型预测和临床结果预测。

换句话说,对宿主-病原体关系以及疾病起源和流行情况的深入了解有助于对大多数过程进行更有效的分子监测(阿迪拉等人,2024年)。


十、计算机视觉与人工智能在兽医外科手术中的作用

计算机增强可视化(CV)涉及图像的使用以及超声设备的解读。

CV正在改变各部门的领域包括图像诊断和图像手术。这种CV成像在医学和兽医学中都有多种应用部位,包括放射摄影、超声(US)、计算机断层扫描(CT)、磁共振成像(MRI)、正电子发射断层扫描(PET)、视网膜摄影和组织学等,(祖拉夫和埃夫纳,2022年)。

基于人工智能和深度学习算法的使用所产生的一个基本偏见可能会减少视觉评估中的主观性。虽然在过去几十年里人类医学图像分析领域取得了巨大进展,但其在兽医临床实践中的应用仍在进行中,特别是在贫穷和中等收入国家(巴拉甘 - 蒙特罗等人,2021年)。

一种智能组织自主机器人(STAR)已被制造出来,具备超越人类外科医生的能力,它是由约翰·霍普金斯大学设计的。智能组织自主机器人已被用于手术,特别是在动物的肠道吻合术中。

因此,通过利用指示手术行动具体方向、评估潜力和缺点的手术算法(富恩特斯等人,2022年)。基于患者特征的有效策略,可以假设人工智能辅助的手术程序将提高其效率。

它们还将帮助外科医生在实际图像上叠加重要信息以提高精度并避免错误,同时它们将提供关于外科医生实际操作的建议或警告,或者在手术变得意外困难的情况下提供帮助(施等人,2021年)。


十一、人工智能在兽医疫苗技术中的应用

如图7所示,人工智能已被用作动物疫苗生产中的创新资产。

人工智能在兽用疫苗研发过程中的益处

机器学习技术和其他计算方法用于处理基因组学和蛋白质组学数据。这些方法纳入抗原 - 抗体相互作用并模拟对几种疫苗的免疫反应。人工智能通过分析遗传信息和生物标志物能够确定疫苗的最佳配方(艾达等人,2021年)。

使用人工智能算法对于估计现有佐剂的后果和新疫苗的开发至关重要。人工智能通过分析免疫细胞的分子结构和运作来提高免疫原性的有效性,从而为疫苗提供更好的佐剂配方。

计算机算法利用大量数据,如电子医疗数据来估计疫苗接种的可能后果。人工智能算法还可以通过对试验数据、遗传数据和生物标志物的反应性来估计疫苗的保护效果,确保安全性和有效性(奥拉瓦德等人,2024年)。


反向疫苗学基于人工智能方法,该方法扫描病原体基因组以寻找编码表面暴露免疫原性蛋白质的基因。

社区卫生服务(CHs)已证明人工智能在确定疫苗接种目标方面很有用,并提高了针对几种疾病的发现疫苗的速度和效率。

人工智能算法通过根据潜在表位分析蛋白质序列和结构来预测包含病原体蛋白质部分的抗原。这有助于选择疫苗接种目标并设计能够引发大量免疫反应的肽衍生疫苗。人工智能已被有效地用于确定人类疫苗接种的关键目标,同样也用于兽医学(埃扎诺等人,2021年)。

人工智能被用于识别严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的S蛋白,并助力辉瑞/ BioNTech和莫德纳疫苗的研发。这些算法利用病毒基因组序列预测刺突蛋白的免疫原性表面。人工智能还有助于设计人乳头瘤病毒疫苗(如佳达修和卉妍康)以及疟疾疫苗(如RTS,S/AS01),这是基于对病毒蛋白结构免疫反应的预测。

人工智能处理复杂数据、模拟免疫反应以及识别潜在疫苗目标的能力,通过为兽医提供更快、更安全、更有效的动物福利解决方案,变革了兽医疫苗科学(伦格伦和威尔逊,2022年)。


结束语

本期推文的内容就到这里啦,如果需要获取医学AI领域的最新发展动态,请关注小罗的推送!如需进一步深入研究,获取相关科研服务,欢迎扫码前往我们团队的主页!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值