pandas获取某列最大值的所有数据

第一种方法:

按照某列进行由大到小的排序,然后再进去去重,保留第一个值,最终保留的结果就是最大值的数据


# 由大到小排序
data_frame = data_frame.sort_values(by='column_a', ascending=False)

# 按照column_b列去重保留第一条,剩下的值即为最大值
data_frame.drop_duplicates(labels='column_b', keep='first', inplace=True)

第二种方法:

获取某列最大值的索引,然后再反取索引对应的行即可

比如,有一个daframe有A,B,C三列,现在需要取C列每个值对应A列最大的值:

    df = pd.DataFrame({
        'A': [1, 4, 7, 10, 2],
        'B': [5, 2, 9, 3, 6],
        'C': [8, 8, 1, 1, 1]
    })

    print(df)
    print('----------------')
    # 需要取C列每个值对应的A列的最大值

    df_new = df.groupby('C')['A'].agg(pd.Series.idxmax)
    print(df_new)
    print('----------------')

    df = df.iloc[df_new]
    print(df)

Pandas 是一种强大的 Python 库,专用于数据处理和分析,尤其擅长于处理表格型数据。当你想要统计 DataFrame 中某一数据属性时,比如找出该最大值、最小值以及平均值,Pandas 提供了方便快捷的方式来进行操作。 ### 1. 查找最大值Pandas 中查找某一最大值非常简单。你需要调用 `max()` 函数并将目标名作为参数传入。以下是示例代码: ```python # 假设 df 是 DataFrame 对象,col_name 是你想要查询的名 max_value = df[col_name].max() ``` ### 2. 查找最小值 查找最小值的操作类似,只需要将 `max()` 替换为 `min()` 即可: ```python # 获取 col_name 的最小值 min_value = df[col_name].min() ``` ### 3. 计算平均值 计算某一的平均值则需要用到 `mean()` 函数: ```python # 计算 col_name 的平均值 average_value = df[col_name].mean() ``` ### 示例代码 假设我们有一个名为 `df` 的 DataFrame 和一名为 `'age'` 的数据: ```python import pandas as pd data = { 'name': ['Alice', 'Bob', 'Charlie'], 'age': [28, 35, 42], 'height': [170, 180, 165] } df = pd.DataFrame(data) # 查找 age 最大值 max_age = df['age'].max() print("年龄的最大值:", max_age) # 查找 age 的最小值 min_age = df['age'].min() print("年龄的最小值:", min_age) # 计算 age 的平均年龄 avg_age = df['age'].mean() print("年龄的平均值:", avg_age) ``` 通过上述步骤,你可以很容易地对 Pandas 数据帧中的单或多进行各种统计操作,从而深入分析数据。这种方法不仅适用于单,还可以扩展到多分析,提供更为全面的数据洞察力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lytcreate.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值