发掘Spark 3.0潜能:探索与利用调优新特性提升大数据处理性能

本文探讨Spark 3.0的自适应查询执行(AQE)和动态分区裁剪(DPP)特性,以提升大数据处理性能。AQE包括动态合并分区、动态切换Join策略和优化倾斜Join;DPP则通过子查询计算减少处理数据量。通过案例分析展示了如何利用这些特性进行性能优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、Spark3.0 AQE

1.1 动态合并分区

1.2 动态切换Join策略

1.3 动态优化Join倾斜

二、 Spark3.0 DPP

三、Spark3.0 Hint增强

3.1 broadcasthast join

3.2 sort merge join

3.3 shuffle_hash join

3.4 Broadcast Nested Loop Join

3.5 Cartesian Product Join


一、Spark3.0 AQE

Spark 在 3.0 版本推出了 AQE(Adaptive Query Execution),即自适应查询执行。AQE 是 Spark SQL 的一种动态优化机制,在运行时,每当 Shuffle Map 阶段执行完毕,AQE 都会结合这个阶段的统计信息,基于既定的规则动态地调整、修正尚未执行的逻辑计划和物理计划,来完成对原始查询语句的运行时优化。

1.1 动态合并分区

在Spark中运行查询处理非常大的数据时,shuffle通常会对查询性能产生非常重要的影响。shuffle是非常昂贵的操作,因为它需要进行网络传输移动数据,以便下游进行计算。

最好的分区取决于数据,但是每个查

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据与算法架构提升之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值