一、什么是MCP?
MCP(Model Context Protocol,模型上下文协议)是AI领域的"万能插座",由Anthropic提出并开源。它就像USB-C接口一样,让所有大模型(如Claude、GPT、Gemini)都能通过统一的"插头"连接外部工具和数据源。例如,你只需配置一次高德地图的MCP代码,就能让AI自动调用地图数据生成旅行攻略,无需为每个模型单独开发接口。
核心价值:
- 标准化:任何工具只要支持MCP,就能被所有大模型调用。
- 即插即用:像插入U盘一样简单,无需复杂编码。
- 动态扩展:AI能自动发现可用工具,实时调用。
二、大模型不是训练好了吗?为什么还需要MCP?
大模型虽然经过海量训练,但存在三大局限:
- 知识过时:训练数据截止到某个时间点,无法获取最新信息(如实时天气、股票)。
- 功能封闭:无法直接操作外部工具(如发送邮件、修改数据库)。
- 场景受限:缺乏对专业领域数据(如企业内部系统)的访问权限。
MCP的突破:
通过连接外部工具(如高德地图、支付宝、数据库),AI能突破训练数据的限制,完成复杂任务。例如,用户问"规划从广州到武汉的樱花旅行",AI会自动调用地图数据、天气信息,并生成行程计划。
三、Function Call的痛点:每个大模型都要重新造轮子
传统Function Call模式下,开发者需为每个大模型(如GPT、Claude)单独开发接口。例如:
- GPT:需按JSON Schema格式定义工具调用。
- Claude:需按特定语法编写提示词。
- 切换模型:重复劳动,成本高昂。
MCP的解决方案:
统一接口标准,开发者只需开发一次MCP服务,即可被所有兼容模型调用。例如,高德地图的MCP配置代码(见下文),无论使用哪个大模型,都能直接调用地图功能。
四、手把手教你用MCP:3分钟让AI调用高德地图
步骤1:安装支持MCP的工具