购物行为分析

该项目采用Flume收集用户行为数据,通过Kafka进行数据缓冲,利用Flink进行实时流式处理,包括热门商品统计、流量分析和订单支付监控。在亿级用户数据下,使用布隆过滤器优化内存占用,减少MySQL中的去重计数操作,结果存储在Redis中以支持高效匹配查询。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

N.1 项目信息

1)购物行为系统

[2] 技术架构:Flume+Kafka+Flink+MySQL+Redis

[3] 开发工具:IntelliJIDEA+Xshell

[4] 项目描述:对商品流量和营销指标统计,并对支付订单进行超时和对账处理,及黑名单过滤和恶意登录监控。

[5] 原始数据: UserBehavior、ApacheLog、AdClickLog、LoginLog、ReceiptLog和OrderLog的csv文件名。

[7]技术实现:

▪信息采集:Flume对用户操作记录进行采集,实时发送到Kafka集群;

▪信息缓冲:Kafka作为流式数据的缓存,接受Flume推送请求,并将数据推到流式处理系统;  

▪流式处理:Flink(WindowAPI+ProcessingAPI+CEP+...等)进行数据处理,开发热门商品、流量统计、营销指标、恶意登入和订单支付的信息;

▪数据下沉:将开发结果实时打印控制台或保存至MySQL数据库。

在亿级的UserID情况下,UserID都保存在flink窗口计算的状态里面,而我们需要统计用户量UV的话,id在mysql去重计数也很消耗资源,为优化消耗内存和资源,通过使用布隆过滤的存储结构,进行海量去Key,在将数据保存至Rdis。之所以保存在Rdis,因为做布隆过滤的操作会频繁交互匹配,选用redis数据库比较好;

N.2 项目架构图

 N.3 项目统计

————————————————————————

————————————————————————

 ————————————————————————

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

研发咨询顾问

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值