N.1 项目信息
1)购物行为系统 [2] 技术架构:Flume+Kafka+Flink+MySQL+Redis [3] 开发工具:IntelliJIDEA+Xshell [4] 项目描述:对商品流量和营销指标统计,并对支付订单进行超时和对账处理,及黑名单过滤和恶意登录监控。 [5] 原始数据: UserBehavior、ApacheLog、AdClickLog、LoginLog、ReceiptLog和OrderLog的csv文件名。 [7]技术实现: ▪信息采集:Flume对用户操作记录进行采集,实时发送到Kafka集群; ▪信息缓冲:Kafka作为流式数据的缓存,接受Flume推送请求,并将数据推到流式处理系统; ▪流式处理:Flink(WindowAPI+ProcessingAPI+CEP+...等)进行数据处理,开发热门商品、流量统计、营销指标、恶意登入和订单支付的信息; ▪数据下沉:将开发结果实时打印控制台或保存至MySQL数据库。 而在亿级的UserID情况下,UserID都保存在flink窗口计算的状态里面,而我们需要统计用户量UV的话,id在mysql去重计数也很消耗资源,为优化消耗内存和资源,通过使用布隆过滤的存储结构,进行海量去Key,在将数据保存至Rdis。之所以保存在Rdis,因为做布隆过滤的操作会频繁交互匹配,选用redis数据库比较好; |
N.2 项目架构图
N.3 项目统计
————————————————————————
————————————————————————
————————————————————————