算法工程师岗位面试必备,讲透深度学习面试题,详解人工智能生成式任务与AI大模型面试题

本文汇总了深度学习面试中常见的1000余道题目,涵盖卷积、BN优化、TensorRT加速、损失函数、视觉感知算法(如人脸检测、目标检测)、AIGC与大模型理论、编程挑战及自动驾驶相关技术。详尽讲解并提供实际面试经验分享。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DeepLearning-Interview-Awesome-2024

实时更新题解链接:https://github.com/315386775/DeepLearing-Interview-Awesome-2024

记得点个关注!

  • 算法工程师岗位面试必备,手工整理,1000余道题目QA,讲透深度学习面试题,详解人工智能生成式任务与AI大模型面试题。其中题目来源:a. 结合面试与被面试的经验,涉及的相关题目;b. 通过朋友、知识星球及人脉等相关渠道整理的来自国内公司的实际面试题;c. 通过自己的理解进行相关方向的延申与题目整理。

  • 新增LLM专题面试QA!(20230818)

⏰深度学习面试题

01.卷积和BN如何融合提升推理速度
02.多卡BN如何处理
03.TensorRT为什么能让模型跑更快
04.损失函数的应用-合页损失
05.Pytorch DataLoader的主要参数有哪些
06.神经网络引入注意力机制后效果降低的原因
07. 为什么交叉熵可以作为损失函数
08. 优化算法之异同 SGD/AdaGrad/Adam
09. 有哪些权重初始化的方法
10. MMengine的一些特性
11. Modules的一些属性问题
12. 激活函数的对比与优缺点
13. Transformer/CNN/RNN的时间复杂度对比
14. 深度可分离卷积

🍳视觉感知算法

01.人脸识别任务中,ArcFace为什么比CosFace效果好
02. FCOS如何解决重叠样本,以及centerness的作用
03. Centernet为什么可以去除NMS,以及正负样本的定义
04. 介绍CBAM注意力
05. 介绍mixup及其变体
06. Yolov5的正负样本定义
07. Yolov5的一些相关细节
08. Yolov7的正负样本定义
09. Yolov8的正负样本定义
10. Yolov5的Foucs层和Passthrough层有什么区别
11. DETR的检测算法的创新点
12. CLIP的核心创新点
13. 目标检测中旋转框IOU的计算方式
14. 局部注意力如何实现
15. 视觉任务中的长尾问题的常见解决方案

🏆AIGC与大模型

01. LLM
02. CLIP
03. SAM分割一切模型

🚩Leetcode高频100题

01. 不错的刷题框架推荐
02. 快速排序
02. 快速排序

🏳‍🌈项目代码

01. C++中与类型转换相关的4个关键字特点及应用场合
02. 用Numpy的广播机制实现矩阵之间距离的计算
02. Python装饰器及其作用
03. map,lambda,filter,reduce的用法
04. Pytorch实现注意力机制、多头注意力
05. C++实现Conv2D

🛺自动驾驶

01. 相机内外参数
02. 坐标系的变换
03. 放射变换与逆投影变换分别是什么
03. 01. 相机内外惨
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值