SO(3)、SE(3)、E(3)

本文探讨了机器学习模型如何通过引入旋转不变性、平移不变性和镜像反转不变性来提高准确性和泛化能力。这些不变性分别对应于SO(N)、SE(N)和E(N)结构。当模型不具备这些性质时,可能会导致物理上不自然的效应,如非自然外力或对光学异构体的能量差异推断。理解并利用这些不变性对于构建更强大的机器学习模型至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一般来说,机器学习模型必须加入目标域的归纳偏差,以提高准确性和泛化性能。原子结构的NNs所具有的一些性质包括旋转不变性、平移不变性和镜像反转不变性。

其中,具有旋转不变性的称为SO(N),除SO(N)外具有平移不变性的称为SE(N),除SE(N)外具有镜像反转不变性的称为E(N)。当它们没有装备时,会产生物理上的非自然效应,例如非自然外力或推断光学异构体的不同能量。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值