TensorFlow 编程训练1

编程实现实在Pycharm中,具体的安装教程可以自行百度解决。也可以在Anaconda自带的Jupyter里进行操作,总之,平台不是很重要,但是个人习惯了VS的那种界面,所以更喜欢Pycharm的风格。

首先导入两个必要的库,然后生成数据,最后进行学习,打印出两个参数的学习结果。完毕。

import tensorflow as tf
import numpy as np

# create data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1 + 0.3

# create TensorFlow structure start #

Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))

biases = tf.Variable(tf.zeros([1]))

y = Weights*x_data + biases

loss = tf.reduce_mean(tf.square(y-y_data))

optimizer = tf.train.GradientDescentOptimizer(0.5)

train = optimizer.minimize(loss)

init = tf.global_variables_initializer()

# create TensorFlow structure end #

sess = tf.Session()
# very important Point
sess.run(init)

for step in range(201):
    sess.run(train)
    if step % 20 == 0:
        print(step, sess.run(Weights), sess.run(biases))

这是Pycharm的界面分风格

这是Jupyter的风格


其实Spyder也不错


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值