编程实现实在Pycharm中,具体的安装教程可以自行百度解决。也可以在Anaconda自带的Jupyter里进行操作,总之,平台不是很重要,但是个人习惯了VS的那种界面,所以更喜欢Pycharm的风格。
首先导入两个必要的库,然后生成数据,最后进行学习,打印出两个参数的学习结果。完毕。
import tensorflow as tf
import numpy as np
# create data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1 + 0.3
# create TensorFlow structure start #
Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
biases = tf.Variable(tf.zeros([1]))
y = Weights*x_data + biases
loss = tf.reduce_mean(tf.square(y-y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
init = tf.global_variables_initializer()
# create TensorFlow structure end #
sess = tf.Session()
# very important Point
sess.run(init)
for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(Weights), sess.run(biases))
这是Pycharm的界面分风格
这是Jupyter的风格
其实Spyder也不错