多层感知机模型讲解

具有多层输出的感知机如下图所示:
图中节点上的符号表示的含义是:

  • x k 1 x^1_k xk1代表第1层上的第k个节点
  • O k 1 O^1_k Ok1同样代表第1层上的第k个节点

若能求出 ∇ E ∇ w j k \frac{\nabla E}{\nabla w_{jk}} wjkE的结果,便可知道所有的梯度信息

Derivative

首先我们定义 E = 1 2 ∑ i ( O i 1 − t i ) 2 E=\frac{1}{2}\sum_i(O^1_i - t_i)^2 E=21i(Oi1ti)2
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ \frac{\nabl…
由推导结果可看出,一条边上的输出结果只与该线上的输入值 x j 0 x^0_j xj0 O k 1 O^1_k Ok1,因此对于一个多输出的感知机,对比单输出的感知机,改变了输出节点上的取值。单层为 O 0 O_0 O0,多层为 ( O k 1 − t k ) (O_k^1-t_k) (Ok1tk)

import torch
import torch.nn.functional as F

x = torch.randn(1,10) # dim=1,len=10, x为[1,10]的矩阵
w = torch.randn(2, 10, requires_grad=True) # w为[2,10]的矩阵

o = torch.sigmoid(x@w.t()) # o为[1,2]的矩阵
print("o.shape: ", o.shape)

loss = F.mse_loss(input=o, target=torch.ones(1, 2))
print("loss: ", loss)
loss.backward()
print("w.grad: ", w.grad)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学家是我理想

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值