具有多层输出的感知机如下图所示:
图中节点上的符号表示的含义是:
- x k 1 x^1_k xk1代表第1层上的第k个节点
- O k 1 O^1_k Ok1同样代表第1层上的第k个节点
若能求出 ∇ E ∇ w j k \frac{\nabla E}{\nabla w_{jk}} ∇wjk∇E的结果,便可知道所有的梯度信息
Derivative
首先我们定义
E
=
1
2
∑
i
(
O
i
1
−
t
i
)
2
E=\frac{1}{2}\sum_i(O^1_i - t_i)^2
E=21∑i(Oi1−ti)2
KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ \frac{\nabl…
由推导结果可看出,一条边上的输出结果只与该线上的输入值
x
j
0
x^0_j
xj0和
O
k
1
O^1_k
Ok1,因此对于一个多输出的感知机,对比单输出的感知机,改变了输出节点上的取值。单层为
O
0
O_0
O0,多层为
(
O
k
1
−
t
k
)
(O_k^1-t_k)
(Ok1−tk)
import torch
import torch.nn.functional as F
x = torch.randn(1,10) # dim=1,len=10, x为[1,10]的矩阵
w = torch.randn(2, 10, requires_grad=True) # w为[2,10]的矩阵
o = torch.sigmoid(x@w.t()) # o为[1,2]的矩阵
print("o.shape: ", o.shape)
loss = F.mse_loss(input=o, target=torch.ones(1, 2))
print("loss: ", loss)
loss.backward()
print("w.grad: ", w.grad)