Tacotron2 Inference教程

本教程介绍了如何在Google Colab环境中利用预训练的Tacotron2和WaveGlow模型进行语音合成。首先,从GitHub克隆 Tacotron2 代码并下载预训练模型。接着,安装必要的库,如unidecode,并调整TensorFlow为1.x版本。然后,载入模型,处理输入文本,生成梅尔谱和注意力图,最后使用WaveGlow将梅尔谱转化为音频。通过Denoiser可选择性地去除音频噪声。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录结构

本教程实验环境为Google Colab,文件目录结构如下

ALL
└── tacotron2
    ├── audio_processing.py
    ├── checkpoint_269000
    ├── data_utils.py
    ├── demo.wav
    ├── distributed.py
    ├── Dockerfile
    ├── filelists
    │   ├── ljs_audio_text_test_filelist.txt
    │   ├── ljs_audio_text_train_filelist.txt
    │   └── ljs_audio_text_val_filelist.txt
    ├── hparams.py
    ├── inference.ipynb
    ├── layers.py
    ├── LICENSE
    ├── logger.py
    ├── loss_function.py
    ├── loss_scaler.py
    ├── model.py
    ├── multiproc.py
    ├── plotting_utils.py
    ├── __pycache__
    │   ├── audio_processing.cpython-36.pyc
    │   ├── data_utils.cpython-36.pyc
    │   ├── distributed.cpython-36.pyc
    │   ├── hparams.cpython-36.pyc
    │   ├── layers.cpython-36.pyc
    │   ├── logger.cpython-36.pyc
    │   ├── loss_function.cpython-36.pyc
    │   ├── model.cpython-36.pyc
    │   ├── plotting_utils.cpython-36.pyc
    │   ├── stft.cpython-36.pyc
    │   ├── train.cpython-36.pyc
    │   └── utils.cpython-36.pyc
    ├── README.md
    ├── requirements.txt
    ├── stft.py
    ├── tensorboard.png
    ├── text
    │   ├── cleaners.py
    │   ├── cmudict.py
    │   ├── __init__.py
    │   ├── LICENSE
    │   ├── numbers.py
    │   ├── __pycache__
    │   │   ├── cleaners.cpython-36.pyc
    │   │   ├── cmudict.cpython-36.pyc
    │   │   ├── __init__.cpython-36.pyc
    │   │   ├── numbers.cpython-36.pyc
    │   │   └── symbols.cpython-36.pyc
    │   └── symbols.py
    ├── train.py
    ├── utils.py
    └── waveglow
        ├── config.json
        ├── convert_model.py
        ├── denoiser.py
        ├── distributed.py
        ├── glow_old.py
        ├── glow.py
        ├── inference.py
        ├── LICENSE
        ├── mel2samp.py
        ├── __pycache__
        │   ├── denoiser.cpython-36.pyc
        │   └── glow.cpython-36.pyc
        ├── README.md
        ├── requirements.txt
        ├── tacotron2
        ├── train.py
        ├── waveglow_256channels_universal_v5.pt
        └── waveglow_logo.png

文件准备

首先请读者创建一个名为ALL的空文件夹,通过git clone https://github.com/NVIDIA/tacotron2.git命令将tacotron2完整的代码文件下载下来。此时ALL文件夹里面会多出一个名为tacotron2的文件夹,在这个文件夹里有一个inference.ipynb文件,就是等会要用到的推理部分的代码

接着将预训练好的WaveGlow模型保存到waveglow文件夹中(该模型名为waveglow_256channels_universal_v5.pt

最后还需要一个最重要的文件,就是tacotron2训练时保存的模型文件,一般在训练过程中,它会自动命名为checkpoint_xxxx,将其放到tacotron2文件夹下。如果你自己没有训练tacotron2,官方也提供了一个训练好的模型文件

修改Inference代码

再次强调,我的实验环境是Colab,以下内容均为,文字解释在上,对应代码在下

首先需要确保tensorflow版本为1.x,否则会报错

%tensorflow_version 1.x
import tensorflow as tf
tf.__version__

然后进入ALL/tacotron2目录

%cd ALL/tacotron2

执行代码前需要确保已经安装了unidecode

!pip install unidecode

导入库,定义函数

import matplotlib
%matplotlib inline
import matplotlib.pylab as plt

import IPython.display as ipd

import sys
sys.path.append('waveglow/')
import numpy as np
import torch

from hparams import create_hparams
from model import Tacotron2
from layers import TacotronSTFT, STFT
from audio_processing import griffin_lim
from train import load_model
from text import text_to_sequence
from denoiser import Denoiser

def plot_data(data, figsize=(16, 4)):
    fig, axes = plt.subplots(1, len(data), figsize=figsize)
    for i in range(len(data)):
        axes[i].imshow(data[i], aspect='auto', origin='bottom', 
                       interpolation='none')
        
hparams = create_hparams()
hparams.sampling_rate = 21050 # 该参数会影响生成语音的语速,越大则语速越快

checkpoint_path = "checkpoint_269000"
model = load_model(hparams)
model.load_state_dict(torch.load(checkpoint_path)['state_dict'])
_ = model.cuda().eval().half()

接着进入waveglow目录加载waveglow模型

%cd ALL/tacotron2/waveglow

waveglow_path = 'waveglow_256channels_universal_v5.pt'
waveglow = torch.load(waveglow_path)['model']
waveglow.cuda().eval().half()
for k in waveglow.convinv:
    k.float()
denoiser = Denoiser(waveglow)

输入文本

text = "WaveGlow is really awesome!"
sequence = np.array(text_to_sequence(text, ['english_cleaners']))[None, :]
sequence = torch.autograd.Variable(
    torch.from_numpy(sequence)).cuda().long()

生成梅尔谱输出,以及画出attention图

mel_outputs, mel_outputs_postnet, _, alignments = model.inference(sequence)
plot_data((mel_outputs.float().data.cpu().numpy()[0],
           mel_outputs_postnet.float().data.cpu().numpy()[0],
           alignments.float().data.cpu().numpy()[0].T))

使用waveglow将梅尔谱合成为语音

with torch.no_grad():
    audio = waveglow.infer(mel_outputs_postnet, sigma=0.666)
ipd.Audio(audio[0].data.cpu().numpy(), rate=hparams.sampling_rate)

(可选)移除waveglow的bias

audio_denoised = denoiser(audio, strength=0.01)[:, 0]
ipd.Audio(audio_denoised.cpu().numpy(), rate=hparams.sampling_rate)
Tacotron 2是一种基于深度学习的文本到语音(Text-to-Speech, TTS)合成模型,由Google在2017年提出。它结合了序列到序列(seq2seq)模型和注意力机制,能够将文本转换为高质量的语音波形。Tacotron 2的Python实现通常使用深度学习框架如TensorFlow或PyTorch。 以下是Tacotron 2的主要组成部分和实现步骤: ### 主要组成部分 1. **编码器(Encoder)**: - 将文本序列转换为固定长度的向量表示。 - 通常使用卷积神经网络(CNN)和循环神经网络(RNN)来提取文本特征。 2. **注意力机制(Attention Mechanism)**: - 帮助模型在生成语音时对齐文本和语音。 - 常见的注意力机制包括加性注意力(Additive Attention)和点积注意力(Dot-Product Attention)。 3. **解码器(Decoder)**: - 根据编码器的输出和注意力机制的权重,生成梅尔频谱图(Mel-Spectrogram)。 - 通常使用自回归模型(如LSTM或GRU)来生成频谱图。 4. **后处理网络(Post-Net)**: - 对生成的梅尔频谱图进行微调,以生成更高质量的频谱图。 - 通常使用卷积神经网络(CNN)来实现。 5. **声码器(Vocoder)**: - 将梅尔频谱图转换为最终的语音波形。 - 常用的声码器包括WaveNet、WaveGlow和Griffin-Lim。 ### 实现步骤 1. **数据预处理**: - 将文本转换为音素序列或字符序列。 - 对音频数据进行预处理,如提取梅尔频谱图。 2. **模型训练**: - 使用预处理后的数据训练Tacotron 2模型。 - 定义损失函数(如均方误差)并使用优化器(如Adam)进行训练。 3. **模型推理**: - 输入文本序列,生成对应的梅尔频谱图。 - 使用声码器将频谱图转换为语音波形。 ### 示例代码 ```python import torch from tacotron2 import Tacotron2 from hparams import create_hparams from train import load_model from text import text_to_sequence from audio_processing import griffin_lim # 创建超参数 hparams = create_hparams() # 加载预训练模型 model = load_model(hparams) model.load_state_dict(torch.load('tacotron2_statedict.pt')['state_dict']) model.eval() # 输入文本 text = "Hello, how are you?" # 文本转序列 sequence = np.array(text_to_sequence(text, ['english_cleaners']))[None, :] sequence = torch.autograd.Variable(torch.from_numpy(sequence)).cuda().long() # 生成梅尔频谱图 mel_outputs, mel_outputs_postnet, _, alignments = model.inference(sequence) # 使用Griffin-Lim算法生成语音波形 waveform = griffin_lim(mel_outputs_postnet) # 保存音频文件 from scipy.io.wavfile import write write('output.wav', hparams.sampling_rate, waveform) ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学家是我理想

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值