✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
多变量回归预测在众多领域扮演着关键角色,例如金融市场预测、气象预报、能源需求预测等。准确的预测结果有助于决策者制定合理的策略,规避潜在的风险。然而,实际应用中的数据往往具有高度非线性、时序依赖性以及复杂的特征关联,使得传统的线性模型难以满足日益增长的预测精度需求。近年来,深度学习方法在处理复杂数据方面展现出强大的优势,但如何有效地提取多变量数据中的时空特征,并捕捉关键时间步的信息,仍然是研究的热点和难点。
本文旨在探讨一种基于贝叶斯优化(Bayesian Optimization, BO)的卷积神经网络(Convolutional Neural Netw