【图像配准】基于sift算法实现图像配准matlab源码

本文介绍了一种基于SIFT算法实现的图像配准方法,包括图像读取、关键点检测、描述符生成及匹配等步骤,并展示了具体的MATLAB代码实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 基于sift算法实现图像配准算法

模型参考这里

2 部分代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
close all;
clear all;
 
%% image path
file_image='F:\class_file\图像配准\图像配准';
 
%% read images
[filename,pathname]=uigetfile({'*.*','All Files(*.*)'},'Reference image',...
                          file_image);
image_1=imread(strcat(pathname,filename));
[filename,pathname]=uigetfile({'*.*','All Files(*.*)'},'Image to be registered',...
                          file_image);
image_2=imread(strcat(pathname,filename));
 
figure;
subplot(1,2,1);
imshow(image_1);
title('Reference image');
subplot(1,2,2);
imshow(image_2);
title('Image to be registered');
 
%% make file for save images
if (exist('save_image','dir')==0)%如果文件夹不存在
    mkdir('save_image');
end
 
t1=clock;%Start time
 
%% Convert input image format
[~,~,num1]=size(image_1);
[~,~,num2]=size(image_2);
if(num1==3)
    image_11=rgb2gray(image_1);
else
    image_11=image_1;
end
if(num2==3)
    image_22=rgb2gray(image_2);
else
    image_22=image_2;
end
 
%Converted to floating point data
image_11=im2double(image_11);
image_22=im2double(image_22);   
 
%% Define the constants used
sigma=1.6;%最底层高斯金字塔的尺度
dog_center_layer=3;%定义了DOG金字塔每组中间层数,默认是3
contrast_threshold_1=0.03;%Contrast threshold
contrast_threshold_2=0.03;%Contrast threshold
edge_threshold=10;%Edge threshold
is_double_size=false;%expand image or not
change_form='affine';%change mode,'perspective','affine','similarity'
is_sift_or_log='GLOH-like';%Type of descriptor,it can be 'GLOH-like','SIFT'
 
%% The number of groups in Gauss Pyramid
nOctaves_1=num_octaves(image_11,is_double_size);
nOctaves_2=num_octaves(image_22,is_double_size);
 
%% Pyramid first layer image
image_11=create_initial_image(image_11,is_double_size,sigma);
image_22=create_initial_image(image_22,is_double_size,sigma);
 
%%  Gauss Pyramid of Reference image
tic;
[gaussian_pyramid_1,gaussian_gradient_1,gaussian_angle_1]=...
build_gaussian_pyramid(image_11,nOctaves_1,dog_center_layer,sigma);                                                      
disp(['参考图像创建Gauss Pyramid花费时间是:',num2str(toc),'s']);
 
%% DOG Pyramid of Reference image
tic;
dog_pyramid_1=build_dog_pyramid(gaussian_pyramid_1,nOctaves_1,dog_center_layer);
disp(['参考图像创建DOG Pyramid花费时间是:',num2str(toc),'s']);
 
%% display the Gauss Pyramid,DOG Pyramid,gradient of Reference image
display_product_image(gaussian_pyramid_1,dog_pyramid_1,gaussian_gradient_1,...
        gaussian_angle_1,nOctaves_1,dog_center_layer,'Reference image');                              
 clear gaussian_pyramid_1;
 
%% Reference image DOG Pyramid extreme point detection
tic;
[key_point_array_1]=find_scale_space_extream...
(dog_pyramid_1,nOctaves_1,dog_center_layer,contrast_threshold_1,sigma,...
edge_threshold,gaussian_gradient_1,gaussian_angle_1);
disp(['参考图像关键点定位花费时间是:',num2str(toc),'s']);
clear dog_pyramid_1;
 
%% descriptor generation of the reference image 
tic;
[descriptors_1,locs_1]=calc_descriptors(gaussian_gradient_1,gaussian_angle_1,...
                                key_point_array_1,is_double_size,is_sift_or_log);
disp(['参考图像描述符生成花费时间是:',num2str(toc),'s']); 
clear gaussian_gradient_1;
clear gaussian_angle_1;
 
%% Gauss Pyramid of the image to be registered
tic;
[gaussian_pyramid_2,gaussian_gradient_2,gaussian_angle_2]=...
build_gaussian_pyramid(image_22,nOctaves_2,dog_center_layer,sigma);                                                                                                  
disp(['待配准图像创建Gauss Pyramid花费时间是:',num2str(toc),'s']);
 
%% DOG of the image to be registered
tic;
dog_pyramid_2=build_dog_pyramid(gaussian_pyramid_2,nOctaves_2,dog_center_layer);
disp(['待配准图像创建DOG Pyramid花费时间是:',num2str(toc),'s']);
display_product_image(gaussian_pyramid_2,dog_pyramid_2,gaussian_gradient_2,...
        gaussian_angle_2,nOctaves_2,dog_center_layer,'Image to be registered');                              
clear gaussian_pyramid_2;
 
%% Image to be registered DOG Pyramid extreme point detection
tic;
[key_point_array_2]=find_scale_space_extream...
(dog_pyramid_2,nOctaves_2,dog_center_layer,contrast_threshold_2,sigma,....
edge_threshold,gaussian_gradient_2,gaussian_angle_2);
disp(['待配准图像关键点定位花费时间是:',num2str(toc),'s']);
clear dog_pyramid_2;
 
%% descriptor generation of the Image to be registered
tic;
[descriptors_2,locs_2]=calc_descriptors(gaussian_gradient_2,gaussian_angle_2,...
                       key_point_array_2,is_double_size,is_sift_or_log);
disp(['待配准图像描述符生成花费时间是:',num2str(toc),'s']); 
clear gaussian_gradient_2;
clear gaussian_angle_2;
 
%% match
tic;
[solution,rmse,cor1,cor2]=...
    match(image_2, image_1,descriptors_2,locs_2,descriptors_1,locs_1,change_form);
disp(['特征点匹配花费时间是:',num2str(toc),'s']); 
 

3 仿真结果

img

img

img4 参考文献

[1]汪道寅. 基于SIFT图像配准算法的研究[D]. 中国科学技术大学.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值