【图像识别】基于BP神经网络实现手写体大写字母识别matlab代码

本文介绍了使用MATLAB实现基于BP神经网络的手写体大写字母识别系统,涵盖图像预处理、字符检测、神经网络训练及识别,达到95%以上准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 1 简介

手写体字符识别是人机交互领域的一个重要内容,本文基于 BP 神经网络实现了任意数量字符模版的多字符手写体字符识别.分为以下几步,第一,首先对目标图像进行识别前预处理.包括灰度图像二值化,图像孤立像素滤波,图像膨胀,腐蚀,按字母最小行分割,按字母最小列分割,图像紧缩,归一化等;第二,用处理好的多个样本进行BP神经网络训练.包括BP网络参数的选择,目标结果构建,输入到结果的映射即用样本库进行神经网络学习机的训练;第三,待测字母的识别.包括对图像预处理,字符提取,归一化和送入已训练好的BP网络进行识别.该系统最终实现了95%以上的手写字符识别正确率,有一定的借鉴意义.

基于 Matlab 的手写字符识别系统由以下模块构成,包括图像预处理、字符有效区域检测、图像分割、样本库训练和测试字符识别,如图 1。其中,原始图像:由数码相机或其它扫描装置拍摄到的图像;图像预处理:对动态采集到的图像进行滤波、边界增强等处理以克服图像干扰;字符分割、归一化:利用梯度检测的字符定位、分割方法得到单个的字符,并将所有字符归一化为固定大小;样本数据库:利用前期采集的每个字母 80 个的手写字符为第 5 步的字符识别建立字符模板数据库;BP 学习机:根据样本数量和训练分类结果构建BP 学习机;字符识别:基于人工神经网络的 OCR 算法,通过特征对比或训练识别出相关的字符,得到最后的英文字符识别结果。

2 部分代码

%reco
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值