【BP预测】基于猫群算法优化BP神经网络实现数据预测附matlab代码

本文通过猫群算法优化BP神经网络,用于岩爆程度预测,克服了BP网络的不足。实验表明,CSO-BP算法预测结果与实际岩爆烈度一致,优于传统方法。介绍了猫群算法的基本流程、主要参数及Matlab实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 简介

由于影响岩爆因素的复杂性,以及岩爆的极强灾害性.本文通过选择影响岩爆程度的四项物理力学指标,最后运算组合以后变成三项输入因子.应用BP神经网络对16组国内外岩爆实际工程案例进行训练,得到最优隐含层数.然后利用猫群群算法(CSO)优化网络的初始权值和闻值,避免了单独使用BP网络时说存茌的不足.利用Matlab及其神经网络工具箱来实现网络的运算和预测.将训练好的网路应用到三组实际的案例中,最终结果表明利用CSO-BP神经网络算法所预测出来的结果和实际岩爆烈度一致,且结果明显优于单因素判据和BP网络预测的结果.

猫群算法(CSO)是 2006 年由台湾学者 Chu 等人通过观察猫群在日常生活中的行为提出来的一种新型群体智能算法。猫群算法与遗传算法类似,是基于迭代的优化方法,但是没有遗传算法的交叉算子,易实现,且拥有全局搜索、较快收敛速度等优点。

猫群算法是研究人员通过观察自然界猫群的生活习性提出来的一种智能算法。该算法把猫群分成跟踪和搜寻两种模式。每只猫即对应问题的一个解。每只猫的属性由猫的速度、猫的适应值、猫处于跟踪或搜寻模式的标志值(通常为 0 或 1)组成。每只猫处于初始位置,然后通过每只猫的标志值判断猫处于搜寻还是跟踪模式。若猫处于跟踪模式,则执行跟踪算子;若猫处于搜寻模式,则执行搜寻算子。最后使得猫处于一个新的位置,并保留最优猫直至算法满足结束条件。猫群算法的基本流程分为以下五步:

a)初始化猫群。

b)根据分组率将猫群随机划分为跟踪和搜寻两种模式。

c)根据猫的标志值对猫执行相应的算子进行位置更新。

d)计算每只猫的适应度ÿ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值