【图像分割】基于全局阈值、otsu、自适应阈值多种算法实现图像分割含Matlab源码

本文重点探讨了图像分割中的全局阈值和自适应阈值方法,包括人工选择法、迭代式阈值选择法、最大类间方差法以及分水岭算法,并通过Matlab进行实现和实验。博主擅长多种领域的Matlab仿真,提供相关代码咨询。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 简介

重点讨论了图像分割法中的阈值研究法,包括全局阈值法和自适应阈值法.对全局阈值算法中的人工选择法,迭代式阈值选择法,最大类间方差法以及自适应算法中的分水岭算法进行了重点分析,用Matlab进行实现并给出了实验结果。

阈值分割方法是一种常见的区域并行技术,原理上利用1 个或者多个阈值对像素点的灰度直方图进行区分,将其分成几个不同的类,得到的像素灰度值在同一类的属于同一个物体。由于直接利用灰度直方图可以简化计算的部分,因此,选取一个适合的阈值就显得尤为重要。想要找到合适的阈值就离不开一个准则函数 [3]。而在实际的研究中,选择合适的阈值并不容易,影响阈值设定的主要因素有光的亮度以及噪声。随着研究的进步,逐步发展了几种解决上述问题的办法,应用比较广泛的有自适应阈值法、最大熵法、类间阈值法以及模糊阈值法等。并且为了保证准确性,至少会采用 2 种或者更多方法来确定阈值。首先把想要处理的原始 图像假设为 f(x,y),阈值分割的主要任务就是将原始的输入函数转 化成输出函数 g(x,y),

得到的函数 g(x,y)的图像是二值图像,利用原图 f(x, y)与阈值 p 比较之后,就能得到分割以后的图像。在现在的研究中,阈值分割算法的核心就是找出最合适的阈值,基于此可以分为人工选择法和自动选择法,要选择的就是阈值,人工选择法就是在通过人的肉眼分析图像的直方图时,根据经验判断合适的阈值。但是在没有人工干预的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值