【RF分类】基于随机森林算法的数据分类附matlab代码

本文介绍了随机森林算法在数据分类中的应用,包括算法原理、分类步骤及优缺点。通过Matlab代码展示了如何训练和测试随机森林模型,以及如何评估特征重要性和模型性能。此外,还提供了预测误差曲线和特征重要性的可视化结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

⛄ 内容介绍

随机森林(Random Forest)是一种集成学习算法,用于解决分类和回归问题。它由多个决策树组成,每个决策树都是通过对训练数据进行自助采样(bootstrap)得到的。

基于随机森林的数据分类步骤如下:

  1. 准备数据集:将数据集划分为特征矩阵(X)和目标变量(y)。

  2. 随机选择样本:对于每个决策树,从样本集中随机选择一部分样本进行训练,这样每个决策树都使用了不同的样本。

  3. 构建决策树:使用训练样本集构建决策树模型。在每个节点上,通过选择最佳特征和划分标准来划分数据。

  4. 重复步骤2和3:重复步骤2和3,构建多个决策树。

  5. 进行预测:对于分类问题,通过投票或多数表决来确定最终的分类结果。对于回归问题,通过取平均值来确定最终的预测值。

随机森林算法具有以下优点:

  • 能够处理大量的输入特征,并且不需要特征缩放。

  • 可以评估特征的重要性,并通过特征选择来提高模型性能。

  • 对于缺失数据和不平衡数据集具有鲁棒性。

  • 可以处理高维数据和非线性关系。

然而,随机森林也有一些限制:

  • 对于包含大量决策树的大型模型,预测速度可能较慢。

  • 对于某些特定的问题,随机森林可能过拟合训练数据。

总的来说,基于随机森林的数据分类是一种强大且灵活的方法,适用于各种分类问题。

⛄ 代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test = mapminmax('apply', P_test, ps_input );t_train = T_train;t_test  = T_test ;%%  转置以适应模型p_train = p_train'; p_test = p_test';t_train = t_train'; t_test = t_test';%%  训练模型trees = 50;                                       % 决策树数目leaf  = 1;                                        % 最小叶子数OOBPrediction = 'on';                             % 打开误差图OOBPredictorImportance = 'on';                    % 计算特征重要性Method = 'classification';                        % 分类还是回归net = TreeBagger(trees, p_train, t_train, 'OOBPredictorImportance', OOBPredictorImportance, ...      'Method', Method, 'OOBPrediction', OOBPrediction, 'minleaf', leaf);importance = net.OOBPermutedPredictorDeltaError;  % 重要性%%  仿真测试t_sim1 = predict(net, p_train);t_sim2 = predict(net, p_test );%%  格式转换T_sim1 = str2double(t_sim1);T_sim2 = str2double(t_sim2);%%  性能评价error1 = sum((T_sim1' == T_train)) / M * 100 ;error2 = sum((T_sim2' == T_test )) / N * 100 ;%%  绘制误差曲线figureplot(1: trees, oobError(net), 'b-', 'LineWidth', 1)legend('误差曲线')xlabel('决策树数目')ylabel('误差')xlim([1, trees])grid%%  绘制特征重要性figurebar(importance)legend('重要性')xlabel('特征')ylabel('重要性')%%  数据排序[T_train, index_1] = sort(T_train);[T_test , index_2] = sort(T_test );T_sim1 = T_sim1(index_1);T_sim2 = T_sim2(index_2);%%  绘图figureplot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};title(string)gridfigureplot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};title(string)grid%%  混淆矩阵figurecm = confusionchart(T_train, T_sim1);cm.Title = 'Confusion Matrix for Train Data';cm.ColumnSummary = 'column-normalized';cm.RowSummary = 'row-normalized';    figurecm = confusionchart(T_test, T_sim2);cm.Title = 'Confusion Matrix for Test Data';cm.ColumnSummary = 'column-normalized';cm.RowSummary = 'row-normalized';

⛄ 运行结果

⛄ 参考文献

[1] 张月梅,刘媛华.基于K近邻和随机森林的情感分类研究[J].计算机与数字工程, 2020, 48(2):5.DOI:CNKI:SUN:JSSG.0.2020-02-020.

[2] 杜增丰,董建江,栾振东,等.一种基于随机森林算法的底栖动物高光谱数据分类方法:CN202211053615.1[P].CN202211053615.1[2023-07-23].

[3] 杨浩宇.基于随机森林算法的高维不平衡数据分类研究及应用[D].郑州大学[2023-07-23].DOI:CNKI:CDMD:2.1017.139820.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值