【故障识别】基于注意力机制融合双向长短期记忆神经网络BILSTM的Adaboost故障识别数据分类BiLSTM-Attention-Adaboost附matlab代码

本文提出了一种基于注意力机制的BiLSTM-Adaboost方法,用于故障识别数据分类。通过在BiLSTM中融合注意力机制,增强特征提取能力,并利用Adaboost提升分类准确率和泛化能力。实验表明,该方法在电机故障数据集上取得了96.0%的准确率,优于传统方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

摘要

本文提出了一种基于注意力机制融合双向长短期记忆神经网络BILSTM的Adaboost故障识别数据分类方法,简称BiLSTM-Attention-Adaboost。该方法将注意力机制引入到BiLSTM神经网络中,增强了模型对故障数据特征的提取能力。同时,采用Adaboost集成学习算法,通过对多个弱分类器的加权组合,提高了模型的分类准确率和泛化能力。实验结果表明,提出的BiLSTM-Attention-Adaboost方法在故障识别数据分类任务上取得了较好的性能,优于传统的机器学习方法和神经网络方法。

1. 引言

故障识别是工业生

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值