【TSP问题】基于豪猪算法CPO求解单仓库多旅行商问题附Matlab代码

本文介绍了使用CPO(Crowding Porcupine Optimization)算法,一种基于豪猪算法的变种,解决单仓库多旅行商问题(SDMTSP)。通过详细阐述CPO算法的步骤,实验结果展示了其在求解SDMTSP中的高效性和鲁棒性。此外,还提供了Matlab代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

旅行商问题(TSP)是一个经典的组合优化问题,其目标是找到一条经过所有城市一次且仅一次的最短路径,最后回到起点。单仓库多旅行商问题(SDMTSP)是TSP的一个变体,其中有多个旅行商从一个仓库出发,访问所有城市并返回仓库。

豪猪算法是一种基于群体智能的元启发式算法,其灵感来自于豪猪的防御机制。在POA中,每个豪猪(解)都试图在群体中保持一个安全距离,同时寻找食物(最优解)。

CPO算法

CPO算法(CPO,Crowding Porcupine Optimization)是POA的一种变体,它通过引入拥挤度概念来增强POA的探索能力。拥挤度衡量解在群体中的密度,拥挤度高的解将受到更大的驱动力来探索新的区域。

CPO算法的步骤如下:

  1. **初始化群体:**随机生成一组解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值