【路径规划】基于双向RRT算法四旋翼无人机路径规划附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着无人机技术的飞速发展,四旋翼无人机凭借其灵活的飞行能力、垂直起降特性以及相对较低的成本,在诸多领域得到了广泛应用,例如航拍摄影、物流运输、灾害救援以及环境监测等。然而,如何在复杂环境中为四旋翼无人机规划出一条安全、高效的飞行路径,仍然是一个极具挑战性的问题。传统的路径规划算法,如A*算法和Dijkstra算法,在处理高维空间和复杂环境时,往往面临计算复杂度过高的问题。而基于采样的方法,例如快速探索随机树(Rapidly-exploring Random Tree, RRT)算法,凭借其概率完备性和较好的计算效率,为解决无人机路径规划问题提供了一种有效的途径。本文将重点探讨基于双向RRT算法的四旋翼无人机路径规划方法,分析其原理、优势以及潜在的改进方向。

RRT算法是一种基于随机采样的路径规划算法,其核心思想是在环境中随机生成节点,并以一定的步长向随机节点扩展,直到探索到目标区域或达到设定的迭代次数。相较于传统的搜索算法,RRT算法无需显式地构建环境模型,只需进行碰撞检测即可判断路径的有效性,因此适用于高维空间和复杂环境下的路径规划问题。然而,单向RRT算法通常从起始点开始向目标点扩展,当环境存在狭窄通道或障碍物密集区域时,搜索效率可能会显著降低,导致算法收敛速度慢,甚至无法找到可行路径。

为了克服单向RRT算法的局限性,双向RRT算法应运而生。双向RRT算法同时从起始点和目标点出发,分别建立两棵RRT树,并通过一定的连接策略将两棵树连接起来,最终形成一条完整的路径。与单向RRT算法相比,双向RRT算法能够更快速地探索环境空间,尤其是在存在狭窄通道的情况下,能够更有效地找到可行路径。其主要原理如下:

  1. 初始化: 分别从起始点和目标点创建两棵RRT树,记为树A和树B。

  2. 随机采样: 在环境空间中随机生成一个采样点,记为x_rand。

  3. 最近邻查找: 在树A中找到距离x_rand最近的节点,记为x_near_A;在树B中找到距离x_rand最近的节点,记为x_near_B。

  4. 扩展: 分别从x_near_A和x_near_B以一定的步长向x_rand方向扩展,生成新的节点x_new_A和x_new_B。在扩展过程中,需要进行碰撞检测,确保新生成的节点没有与环境中的障碍物发生碰撞。

  5. 连接: 判断x_new_A和x_near_B是否可以连接,即从x_new_A到x_near_B的直线路径是否可行。如果可以连接,则将x_new_A加入树A,并将x_near_B加入树A,同时记录连接关系,从而将两棵树连接起来,找到一条完整的路径。反之,判断x_new_B和x_near_A是否可以连接,如果可以连接,则将x_new_B加入树B,并将x_near_A加入树B,同样记录连接关系。

  6. 切换: 在每次迭代过程中,可以根据一定的策略切换两棵树的角色,例如随机切换,或者根据两棵树的节点数量进行切换,保证两棵树都能充分探索环境空间。

  7. 终止条件: 当两棵树成功连接,或者达到设定的最大迭代次数时,算法终止。

基于双向RRT算法的四旋翼无人机路径规划具有以下优势:

  • 概率完备性:

     在迭代次数足够多的情况下,能够以概率1找到可行路径,即使环境非常复杂。

  • 适用于高维空间:

     由于RRT算法基于随机采样,因此计算复杂度相对较低,适用于高维的无人机状态空间(例如,考虑无人机的姿态角、速度等因素)。

  • 无需显式环境模型:

     RRT算法只需要进行碰撞检测,无需构建精确的环境模型,降低了对环境信息的依赖性。

  • 能够有效解决狭窄通道问题:

     双向RRT算法能够同时从起始点和目标点出发,更快速地探索狭窄通道,提高算法的收敛速度。

然而,基于双向RRT算法的四旋翼无人机路径规划仍然存在一些需要改进的地方:

  • 路径质量不高:

     RRT算法生成的路径往往不是最优的,路径长度可能较长,存在冗余的转弯和抖动。

  • 参数敏感性:

     算法的性能对一些参数比较敏感,例如步长、连接概率等,需要根据具体环境进行调整。

  • 实时性挑战:

     虽然RRT算法的计算效率相对较高,但在某些实时性要求较高的场景下,仍然需要进一步优化算法的执行效率。

针对以上问题,可以从以下几个方面进行改进:

  • 路径优化:

     可以采用一些后处理方法对RRT算法生成的路径进行优化,例如路径平滑、路径剪枝等,以提高路径的质量。常用的路径平滑方法包括B样条曲线、贝塞尔曲线等。

  • 智能采样:

     可以采用智能采样策略,例如基于目标点或障碍物的采样策略,引导采样点向更有利于探索的方向分布,提高算法的收敛速度。

  • 启发式引导:

     可以引入启发式函数,例如基于势场法的启发式函数,引导RRT树向目标点方向扩展,提高算法的效率。

  • 并行计算:

     可以采用并行计算的方法,例如在GPU上并行执行碰撞检测,以提高算法的实时性。

  • 结合其他算法:

     可以将RRT算法与其他算法相结合,例如将RRT算法与A算法相结合,利用RRT算法快速找到一条可行路径,然后利用A算法对路径进行优化,以获得更好的路径质量。

  • 考虑无人机动力学约束:

     传统的RRT算法通常只考虑几何约束,而忽略了无人机的动力学约束。可以对RRT算法进行改进,使其能够考虑无人机的动力学约束,例如最大速度、最大加速度等,从而生成更加符合实际情况的飞行路径。

综上所述,基于双向RRT算法的四旋翼无人机路径规划是一种有效的路径规划方法,具有概率完备性、适用于高维空间、无需显式环境模型等优点。然而,该算法仍然存在路径质量不高、参数敏感性、实时性挑战等问题。通过采用路径优化、智能采样、启发式引导、并行计算、结合其他算法以及考虑无人机动力学约束等方法,可以进一步提高基于双向RRT算法的四旋翼无人机路径规划的性能,使其能够更好地应用于实际场景。未来的研究方向可以集中在如何将人工智能技术,例如深度学习、强化学习等,应用于RRT算法的改进,从而实现更加智能、高效的无人机路径规划。例如,可以通过深度学习网络学习环境的特征,并预测RRT树的最佳扩展方向;也可以通过强化学习算法优化RRT算法的参数,使其能够自适应地适应不同的环境。这些研究将有助于推动无人机技术的进一步发展,为无人机在更多领域的应用提供强有力的支持。

⛳️ 运行结果

🔗 参考文献

[1] 冯楠.自主移动机器人路径规划的RRT算法研究[D].大连理工大学,2014.

[2] 田晓亮.无人机路径规划方法研究[D].西安电子科技大学,2014.DOI:10.7666/d.D727189.

[3] 朱宏辉,明瑞冬,朱轶.基于改进RRT~*算法的路径规划[J].武汉理工大学学报, 2017, 39(2):5.DOI:10.3963/j.issn.1671-6477.2017.02.0014.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值