大功率光伏应用不同多电平变换器拓扑的比较研究附Simulink仿真

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、引言

在全球能源转型的大背景下,太阳能作为一种清洁、可再生的能源,其开发与利用备受关注。大功率光伏发电系统因其能够大规模收集并转化太阳能,在能源供应领域的地位日益重要。多电平变换器作为该系统中的核心组件,其拓扑结构的选择对整个系统的性能有着决定性影响。不同的拓扑结构在功率处理能力、输出电压质量、成本效益以及可靠性等方面呈现出各异的特性。深入研究和比较这些不同的多电平变换器拓扑,对于优化大功率光伏应用系统,提高其能源转换效率和经济效益,推动太阳能在更广泛领域的高效利用具有至关重要的意义。

二、多电平变换器拓扑类型

2.1 二极管箝位型(NPC)多电平变换器

二极管箝位型多电平变换器是多电平变换器家族中的经典拓扑之一。它的基本结构由多个功率开关器件、二极管以及电容组成。在其结构中,通过二极管的箝位作用,使得电容电压能够保持相对稳定,从而实现输出电压的多电平化。例如,一个三电平的二极管箝位型变换器,其输出电压可呈现正电平、零电平和负电平三种状态,相比传统两电平变换器,输出电压波形更加接近正弦波,谐波含量大幅降低。这种拓扑结构在早期的大功率应用中得到了广泛应用,其优势在于结构相对简单,易于理解和实现。然而,它也存在一些明显的缺陷,随着电平数的增加,所需的二极管数量会急剧增多,这不仅增加了系统的成本,还使得电路的复杂性大幅上升,同时,二极管的箝位作用可能导致电容电压不均衡的问题,影响系统的稳定运行。

2.2 飞跨电容型(FC)多电平变换器

飞跨电容型多电平变换器采用飞跨电容来实现电平的转换。其工作原理是利用飞跨电容在不同开关状态下的充放电过程,调整输出电压的电平。以一个三电平飞跨电容型变换器为例,在开关动作过程中,飞跨电容会根据电路的需求进行充电或放电,从而使输出电压在不同电平之间切换。该拓扑结构的显著优点是能够有效解决电容电压不均衡的问题,相比二极管箝位型拓扑,其电容电压的平衡控制相对更容易实现。而且,在相同电平数下,飞跨电容型变换器所需的二极管数量较少,一定程度上降低了电路的复杂性。但是,飞跨电容型变换器也面临着自身的挑战,随着电平数的增加,所需的飞跨电容数量会大幅增加,这不仅增加了系统的体积和重量,还提高了成本,并且电容的参数一致性要求较高,否则会影响变换器的性能。

2.3 级联 H 桥型(CHB)多电平变换器

级联 H 桥型多电平变换器由多个 H 桥单元级联而成。每个 H 桥单元都可以独立控制,通过不同 H 桥单元输出电压的组合,实现输出电压的多电平化。例如,当有三个 H 桥单元级联时,理论上可以产生七种不同的输出电平。这种拓扑结构的突出优势在于其模块化程度高,每个 H 桥单元结构相同,便于生产制造和维护。而且,它能够灵活地实现对输出电压和功率的调节,通过控制不同 H 桥单元的工作状态,可以适应不同的负载需求。此外,级联 H 桥型变换器对直流电源的要求相对较低,每个 H 桥单元可以采用独立的直流电源,这在一些分布式电源应用场景中具有很大的优势。然而,该拓扑结构也存在一些不足之处,如需要多个独立的直流电源,增加了系统的复杂性和成本,并且每个 H 桥单元都需要一套独立的驱动电路,这也增加了控制的难度和成本。

三、不同拓扑结构在大功率光伏应用中的性能比较

3.1 输出电压质量

在输出电压质量方面,不同拓扑结构表现各异。二极管箝位型多电平变换器由于其独特的结构,在低电平数时,能够较好地改善输出电压波形,降低谐波含量。但随着电平数的增加,由于二极管数量的增多以及电容电压不均衡等问题,输出电压的谐波性能会逐渐恶化。飞跨电容型多电平变换器在解决电容电压均衡问题的同时,能够在较宽的电平数范围内保持较好的输出电压质量,其输出电压波形更加接近正弦波,谐波含量较低。级联 H 桥型多电平变换器通过多个 H 桥单元的灵活组合,能够产生丰富的输出电平,其输出电压质量在各种拓扑结构中表现较为出色,谐波含量极低,能够满足对电压质量要求较高的应用场景。例如,在一些对电能质量要求严格的工业生产场景中,级联 H 桥型多电平变换器能够有效减少谐波对设备的干扰,保障生产的稳定运行。

3.2 功率处理能力

从功率处理能力来看,二极管箝位型多电平变换器在早期由于其结构相对简单,在一定程度上能够满足中等功率的应用需求。但随着功率等级的进一步提高,其二极管数量增加带来的损耗以及电容电压不均衡问题,限制了其功率处理能力的提升。飞跨电容型多电平变换器由于飞跨电容数量的增加,在高功率应用中,电容的体积和重量成为制约其功率提升的关键因素,且电容的可靠性也会影响系统的整体功率处理能力。级联 H 桥型多电平变换器由于其模块化的结构,具有很强的功率扩展能力。通过增加 H 桥单元的数量,可以方便地实现更高功率的输出,在大功率光伏应用中具有明显的优势。例如,在大型光伏发电站中,级联 H 桥型多电平变换器能够轻松应对兆瓦级别的功率需求,保障电力的高效输出。

3.3 效率

在效率方面,二极管箝位型多电平变换器由于二极管数量较多,导通损耗相对较大,尤其是在高电平数时,这一问题更加突出,从而导致其整体效率有所下降。飞跨电容型多电平变换器的效率相对较高,其电容电压均衡控制较好,减少了因电容电压不均衡导致的额外损耗。但随着电平数增加,飞跨电容数量增多,电容的充放电损耗也会对效率产生一定影响。级联 H 桥型多电平变换器由于其模块化结构,每个 H 桥单元可以独立控制,在部分负载情况下,可以通过合理控制 H 桥单元的工作状态,实现较低的损耗,从而提高整体效率。例如,在光伏发电系统的光照强度变化导致功率输出波动时,级联 H 桥型多电平变换器能够根据实际功率需求,灵活调整工作的 H 桥单元数量,保持较高的效率。

3.4 成本效益

成本效益是选择多电平变换器拓扑时需要重点考虑的因素。二极管箝位型多电平变换器在低电平数时,由于其结构简单,成本相对较低。但随着电平数增加,二极管数量急剧增多,成本大幅上升,且其复杂的电路结构也增加了维护成本。飞跨电容型多电平变换器的成本主要受飞跨电容数量的影响,随着电平数增加,电容成本显著上升,并且由于电容参数一致性要求高,对电容的选型和采购成本也有较大影响。级联 H 桥型多电平变换器虽然模块化程度高,但每个 H 桥单元都需要一套独立的直流电源和驱动电路,这在一定程度上增加了成本。不过,由于其良好的扩展性和可靠性,在大规模应用中,通过规模化生产和优化设计,可以降低单位功率的成本,具有较好的成本效益潜力。例如,在大型光伏发电项目中,通过批量采购和优化系统设计,级联 H 桥型多电平变换器的成本可以得到有效控制,与其他拓扑结构相比,在长期运行中具有更好的成本效益。

3.5 可靠性

可靠性是大功率光伏应用中至关重要的性能指标。二极管箝位型多电平变换器由于二极管数量多,且存在电容电压不均衡问题,一旦某个二极管或电容出现故障,可能会导致整个系统的性能下降甚至瘫痪,可靠性相对较低。飞跨电容型多电平变换器的可靠性主要受飞跨电容的影响,电容的寿命和可靠性直接关系到系统的整体可靠性。虽然其电容电压均衡控制相对较好,但电容数量多,出现故障的概率也相应增加。级联 H 桥型多电平变换器由于其模块化结构,单个 H 桥单元出现故障时,通过合理的冗余设计和控制策略,可以将故障单元隔离,不影响其他单元的正常工作,从而保障系统的继续运行,具有较高的可靠性。例如,在一些对供电可靠性要求极高的特殊应用场景中,级联 H 桥型多电平变换器的高可靠性优势能够得到充分体现,确保光伏发电系统的稳定供电。

四、影响拓扑结构选择的因素

4.1 应用场景需求

不同的应用场景对多电平变换器的性能要求各不相同。在工业生产中,如大型工厂的供电系统,对功率处理能力和输出电压质量要求较高,需要能够稳定提供大功率、高质量电能的变换器拓扑,此时级联 H 桥型多电平变换器可能是较为合适的选择。而在一些对成本较为敏感的分布式光伏发电项目中,如农村地区的小型光伏电站,可能更倾向于选择结构相对简单、成本较低的二极管箝位型多电平变换器,在满足基本功率需求的前提下,降低系统建设成本。在一些对可靠性要求极高的应用场景,如航天领域的光伏发电系统,级联 H 桥型多电平变换器的高可靠性优势使其成为首选。

4.2 成本限制

成本是影响拓扑结构选择的关键因素之一。在项目预算有限的情况下,需要综合考虑变换器的初始采购成本、运行维护成本以及长期的成本效益。对于一些小型光伏发电项目,由于资金有限,可能无法承担复杂拓扑结构带来的高成本,此时简单且成本较低的二极管箝位型或飞跨电容型多电平变换器可能更符合需求。而对于大型光伏发电站,虽然级联 H 桥型多电平变换器的初始成本较高,但考虑到其良好的扩展性、高效性和高可靠性,在长期运行中能够通过降低维护成本和提高发电效率来实现更好的成本效益,因此在资金允许的情况下,也会被广泛应用。

4.3 技术成熟度与维护难度

技术成熟度和维护难度也会影响拓扑结构的选择。二极管箝位型多电平变换器作为一种较早出现的拓扑结构,技术相对成熟,相关的技术资料和维护经验较为丰富,维护人员对其较为熟悉,维护难度相对较低。飞跨电容型多电平变换器虽然在电容电压均衡控制等方面有一定优势,但由于其飞跨电容数量多且参数一致性要求高,维护难度相对较大,对维护人员的技术水平要求也较高。级联 H 桥型多电平变换器由于其模块化结构,单个模块的维护相对简单,但由于系统中包含多个 H 桥单元和独立的直流电源、驱动电路等,整体的维护复杂度较高,需要专业的技术人员进行维护。在选择拓扑结构时,需要根据项目所在地的技术支持情况和维护人员的技术水平来综合考虑。例如,在技术资源相对匮乏的地区,可能更适合选择技术成熟、维护难度低的二极管箝位型多电平变换器。

五、研究展望

5.1 新型拓扑结构的研发

随着大功率光伏应用的不断发展,对多电平变换器性能的要求也越来越高。未来需要研发更加先进的新型拓扑结构,以满足不断增长的应用需求。一方面,可以结合不同传统拓扑结构的优势,探索混合拓扑结构的设计。例如,将二极管箝位型和级联 H 桥型拓扑结构的优点相结合,设计出一种既能有效解决电容电压均衡问题,又具有良好功率扩展能力和可靠性的新型拓扑结构。另一方面,可以利用新材料、新器件的发展,开发基于新型功率器件的多电平变换器拓扑,提高变换器的性能和效率。例如,随着碳化硅(SiC)、氮化镓(GaN)等宽禁带半导体器件的发展,这些器件具有高耐压、低导通电阻、开关速度快等优点,基于这些器件设计的多电平变换器拓扑有望实现更高的功率密度和效率。

5.2 与储能系统的协同优化

在大功率光伏应用中,光伏发电的间歇性和波动性是制约其广泛应用的重要因素。为了解决这一问题,未来多电平变换器拓扑的研究需要更加注重与储能系统的协同优化。通过合理设计多电平变换器与储能系统的接口拓扑和控制策略,实现光伏发电与储能系统的高效协同运行。例如,在光照充足时,多电平变换器将光伏电能高效地存储到储能系统中;在光照不足或用电高峰时,储能系统通过多电平变换器将存储的电能释放出来,保障电力的稳定供应。同时,可以研究基于多电平变换器的混合储能系统拓扑结构,将不同类型的储能设备(如电池、超级电容器等)有机结合起来,充分发挥各自的优势,提高储能系统的性能和可靠性。

5.3 智能控制策略的融合

智能控制策略的融合将是多电平变换器拓扑研究的另一个重要方向。随着人工智能、机器学习等技术的快速发展,可以将这些先进的智能控制技术应用到多电平变换器的控制中。例如,利用神经网络算法对多电平变换器的运行状态进行实时监测和预测,提前发现潜在的故障隐患,实现故障的早期预警和智能诊断。通过强化学习算法优化多电平变换器的控制策略,使其能够根据不同的应用场景和运行条件,自动调整控制参数,实现最优的性能。智能控制策略的融合将提高多电平变换器的智能化水平和自适应能力,进一步提升大功率光伏应用系统的整体性能和可靠性。

六、结论

不同多电平变换器拓扑在大功率光伏应用中各有优劣。二极管箝位型多电平变换器结构简单但存在二极管数量多、电容电压不均衡等问题;飞跨电容型多电平变换器能较好解决电容电压均衡问题但飞跨电容数量多带来成本和可靠性挑战;级联 H 桥型多电平变换器模块化程度高、功率扩展能力强且可靠性高,但成本相对较高。在实际应用中,需要综合考虑应用场景需求、成本限制以及技术成熟度与维护难度等因素,合理选择多电平变换器拓扑结构。未来,随着新型拓扑结构的研发、与储能系统的协同优化以及智能控制策略的融合,多电平变换器在大功率光伏应用中的性能将得到进一步提升,为推动太阳能的高效利用和能源转型提供有力支持。

⛳️ 运行结果

图片

图片

图片

图片

🔗 参考文献

[1] 姚致清,于飞,赵倩,等.基于模块化多电平换流器的大型光伏并网系统仿真研究[J].中国电机工程学报, 2013, 33(36):7.DOI:CNKI:SUN:ZGDC.0.2013-36-004.

[2] 张双阳.多电平电网模拟器拓扑结构及控制策略的研究[D].上海电机学院,2020.

[3] 王磊,李腾飞.基于Matlab/Simulink的混合多电平光伏发电系统仿真研究[J].太阳能, 2016(2):6.DOI:10.3969/j.issn.1003-0417.2016.02.011.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值