✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、引言
1.1 研究背景与意义
水稻作为全球重要的粮食作物,其产量和质量对粮食安全至关重要。稻叶病害是影响水稻生长的关键因素,稻瘟病、白叶枯病、胡麻斑病等病害一旦爆发,会导致水稻减产甚至绝收。传统的病害诊断主要依赖人工观察,效率低且准确性受主观因素影响大。随着计算机视觉、图像处理等技术的发展,利用图像识别技术实现稻叶病的快速、准确诊断成为可能。本研究基于集成特征表示设计稻叶病图像识别系统,旨在为水稻病害防治提供高效、精准的技术支持,对保障水稻产量和质量、促进农业现代化发展具有重要意义。
1.2 国内外研究现状
国内外学者在植物病害图像识别领域开展了大量研究。国外较早将计算机视觉技术应用于植物病害诊断,通过提取颜色、纹理等特征,结合机器学习算法进行病害识别,取得了一定成果。国内相关研究起步稍晚,但发展迅速,在特征提取和分类算法上不断创新,部分研究成果已应用于实际生产。然而,现有研究在特征融合的深度和广度上仍有提升空间,针对稻叶病的集成特征表示和高效识别系统的研究还需进一步深入。
1.3 研究目标与内容
本研究的目标是设计并实现一套基于集成特征表示的稻叶病图像识别系统,能够准确识别稻叶稻瘟病、白叶枯病、胡麻斑病三种病害。主要研究内容包括稻叶病图像收集与预处理、稻叶病数据库的建立、稻叶病集成特征表示、稻叶病图像识别技术以及系统的搭建,具体内容如下:
- 稻叶病图像收集与预处理:采集稻叶稻瘟病、白叶枯病、胡麻斑病三种病害的图片,通过双边滤波消除图片噪声,通过基于颜色特征的病斑提取算法来提取稻叶病斑。
- 稻叶病数据库的建立:建立稻叶病图像库、稻叶病病斑库、稻叶病斑特征库以及稻叶病信息库。
- 稻叶病集成特征表示:提取稻叶病的颜色特征、形状特征以及纹理特征,利用多集典型相关分析进行特征融合得到集成特征。
- 稻叶病图像识别技术:采用 SVM 支持向量机进行稻叶病图像分类训练,得到识别模型。
- 系统的搭建:利用 Matlab 软件搭建整体系统。
二、稻叶病图像收集与预处理
2.1 图像采集
为确保数据的多样性和代表性,本研究通过多种渠道采集稻叶病图像。在不同地区、不同生长阶段的水稻种植田,使用高清数码相机采集稻叶稻瘟病、白叶枯病、胡麻斑病三种病害的自然图像。同时,收集农业科研机构提供的标准病害样本图像,共采集到稻瘟病图像 300 张、白叶枯病图像 280 张、胡麻斑病图像 250 张。
2.2 图像噪声消除
采集到的图像不可避免地会受到噪声干扰,影响后续的特征提取和识别效果。双边滤波是一种非线性滤波方法,它结合了空域信息和灰度相似性,能够在平滑图像的同时保留边缘信息。对于稻叶病图像,噪声主要表现为椒盐噪声和高斯噪声,双边滤波通过计算像素点与其邻域像素点的空间距离和灰度差异,自适应地调整滤波权重,有效地消除了图像噪声,使稻叶病斑的边缘更加清晰。
2.3 病斑提取
基于颜色特征的病斑提取算法是本研究的关键步骤之一。不同的稻叶病害在颜色上具有明显差异,例如稻瘟病病斑多呈褐色,白叶枯病病斑为灰白色,胡麻斑病病斑呈深褐色。通过分析病斑和正常稻叶在 RGB 颜色空间和 HSV 颜色空间的分布特点,设定合适的颜色阈值范围,将病斑从背景中分离出来。具体实现过程中,首先将图像从 RGB 颜色空间转换到 HSV 颜色空间,利用 H(色调)、S(饱和度)、V(明度)分量的特性,更准确地分割病斑区域,然后通过形态学操作对分割后的图像进行优化,去除小的噪声区域,得到完整的稻叶病斑图像。
三、稻叶病数据库的建立
3.1 稻叶病图像库
稻叶病图像库用于存储采集到的原始稻叶病图像,按照病害种类进行分类存储,为后续的研究提供数据基础。每张图像都标注了采集时间、地点、水稻品种、病害类型等信息,方便数据的管理和检索。
3.2 稻叶病病斑库
经过病斑提取处理后的稻叶病斑图像存储在病斑库中。病斑库中的图像去除了背景干扰,只保留了病斑区域,更有利于病斑特征的提取和分析。同样,对病斑库中的图像也进行了详细的标注,包括病斑的面积、位置、形状等信息。
3.3 稻叶病斑特征库
稻叶病斑特征库用于存储提取到的病斑颜色特征、形状特征和纹理特征数据。在特征提取过程中,为每个病斑图像计算相应的特征向量,并与原始图像的标注信息相关联。通过建立特征库,可以方便地对不同病害的特征进行对比分析,为特征融合和识别模型的训练提供数据支持。
3.4 稻叶病信息库
稻叶病信息库主要存储关于稻叶病害的相关知识和信息,包括病害的发病症状、发病原因、传播途径、防治方法等。该信息库不仅为图像识别系统提供辅助信息,还可以为农业技术人员和农民提供病害防治的参考资料。
四、稻叶病集成特征表示
4.1 颜色特征提取
颜色是稻叶病斑的重要特征之一。本研究采用颜色直方图和颜色矩来提取稻叶病斑的颜色特征。颜色直方图统计了图像中不同颜色出现的频率,反映了图像的颜色分布情况;颜色矩则通过计算图像颜色的均值、方差和三阶中心矩,从不同角度描述了颜色的分布特性。在 RGB 颜色空间和 HSV 颜色空间分别计算病斑图像的颜色直方图和颜色矩,得到多维颜色特征向量,全面地描述了病斑的颜色信息。
4.2 形状特征提取
稻叶病斑的形状也具有一定的特异性。采用面积、周长、圆形度、矩形度、离心率等几何形状特征来描述病斑的形状。面积和周长直接反映了病斑的大小和边界长度;圆形度用于衡量病斑形状与圆形的相似程度;矩形度表示病斑形状与矩形的接近程度;离心率则描述了病斑形状的偏心程度。通过计算这些几何形状特征,得到病斑的形状特征向量,为病害识别提供形状方面的依据。
4.3 纹理特征提取
纹理特征能够反映病斑表面的细微结构。本研究采用灰度共生矩阵(GLCM)来提取稻叶病斑的纹理特征。GLCM 通过计算图像中不同灰度像素对在特定方向和距离上的出现频率,得到多个纹理特征参数,如能量、熵、对比度、相关性等。这些参数从不同角度描述了病斑图像的纹理信息,将其组合成纹理特征向量,丰富了病斑的特征表示。
4.4 特征融合
多集典型相关分析(MCCA)是一种有效的特征融合方法,它能够找到多个特征集之间的最大相关关系,提取出最具代表性的综合特征。将提取到的稻叶病斑颜色特征、形状特征和纹理特征作为 MCCA 的输入,通过 MCCA 算法进行特征融合,得到集成特征。集成特征融合了多种特征的优势,能够更全面、准确地描述稻叶病斑的特征,提高病害识别的准确性。
五、稻叶病图像识别技术
5.1 SVM 支持向量机原理
支持向量机(SVM)是一种基于统计学习理论的分类算法,它通过寻找一个最优超平面,将不同类别的样本点尽可能地分开。在处理非线性分类问题时,SVM 通过核函数将低维空间中的样本映射到高维空间,在高维空间中寻找最优超平面。本研究采用径向基函数(RBF)作为核函数,RBF 核函数具有良好的局部逼近能力,能够有效地处理复杂的非线性分类问题。
5.2 模型训练与参数优化
将提取到的集成特征作为 SVM 的输入,按照一定的比例将数据集划分为训练集和测试集。在训练过程中,通过交叉验证的方法对 SVM 的参数进行优化,寻找最优的惩罚参数 C 和核函数参数 γ,以提高模型的泛化能力和分类准确性。经过多次实验和参数调整,确定了最优的 SVM 模型参数,利用训练集对 SVM 模型进行训练,得到稻叶病图像识别模型。
5.3 识别结果评估
使用测试集对训练好的识别模型进行评估,采用准确率、召回率、F1 值等指标来评价模型的性能。准确率表示正确识别的样本数占总样本数的比例;召回率表示正确识别的某类样本数占该类实际样本数的比例;F1 值是准确率和召回率的调和平均数,综合反映了模型的分类性能。实验结果表明,本研究设计的识别模型在稻叶病图像识别上取得了较高的准确率,能够有效地识别稻叶稻瘟病、白叶枯病、胡麻斑病三种病害。
六、系统的搭建
利用 Matlab 软件搭建基于集成特征表示的稻叶病图像识别系统。Matlab 具有强大的图像处理和机器学习工具箱,为系统开发提供了便利的环境。系统界面设计简洁直观,用户可以方便地上传稻叶病图像,系统自动对图像进行预处理、特征提取、特征融合和识别分类,并显示识别结果和相关病害信息。同时,系统还具备数据库管理功能,用户可以对稻叶病图像库、病斑库、特征库和信息库进行查询、添加、删除和修改等操作,方便系统的维护和更新。
⛳️ 运行结果
📣 部分代码
layer_f1_num=size(weight_f1,2);
layer_s1_num=size(weight_f1,1);
%%
for n=1:layer_f1_num
count=0;
for m=1:layer_s1_num
temp=state_s1(:,:,m)*weight_f1(m,n);
count=count+temp;
end
state_f1_temp(:,:,n)=count;
state_f1(:,:,n)=convolution(state_f1_temp(:,:,n),kernel_f1(:,:,n));
end
end
🔗 参考文献
[1] 唐银凤,黄志明,黄荣娟,等.基于多特征提取和SVM分类器的纹理图像分类[J].计算机应用与软件, 2011, 28(6):5.DOI:10.3969/j.issn.1000-386X.2011.06.006.
[2] 王丽君,淮永建,彭月橙.基于叶片图像多特征融合的观叶植物种类识别[J].北京林业大学学报, 2015, 37(1):7.DOI:10.13332/j.cnki.jbfu.2015.01.006.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇