基于主从博弈的智能小区代理商定价策略及电动汽车充电管理附Matlab代码

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着电动汽车(EV)的普及和智能电网技术的发展,智能小区内的电动汽车充电管理成为一个日益突出的挑战。本文旨在探讨一种基于主从博弈理论的智能小区代理商定价策略,以实现电动汽车充电的有效管理。通过将小区代理商视为领导者,电动汽车用户视为跟随者,构建一个分层决策模型。该模型考虑了代理商的利润最大化目标以及用户对充电成本和等待时间的敏感度。本文详细阐述了主从博弈框架下的定价机制,并分析了其在缓解充电高峰、优化充电资源分配以及提升系统整体效率方面的潜力。此外,本文还将探讨不同场景下的定价策略调整,例如考虑可再生能源接入和储能系统的影响。仿真结果表明,该策略能够有效引导用户行为,平抑负荷曲线,从而提高电网运行的稳定性和经济性。

引言

全球气候变化和能源危机促使各国政府大力推广电动汽车。作为未来交通的重要组成部分,电动汽车的快速增长对现有电力系统,特别是配电网,带来了前所未有的挑战。在居民小区层面,由于电动汽车充电行为的高度集中性和随机性,可能导致局部电网负荷过载、电压跌落以及电能质量下降等问题。因此,如何有效地对智能小区内的电动汽车充电进行管理,成为智能电网领域亟待解决的关键问题。

传统的电动汽车充电管理方法通常侧重于技术层面,例如优化充电桩布局、改进充电技术等。然而,这些方法往往忽略了用户行为对充电模式的影响。用户在选择充电时间、地点和功率时,会受到充电价格、等待时间、个人出行计划等多种因素的影响。因此,设计一种能够激励用户主动配合、优化充电行为的经济激励机制至关重要。

博弈论为分析和解决这类多主体决策问题提供了有力的工具。主从博弈(Stackelberg Game),又称领导者-跟随者博弈,特别适用于描述具有层次性决策结构的问题,其中一个或多个参与者(领导者)先做出决策,然后其他参与者(跟随者)根据领导者的决策进行最优响应。在智能小区电动汽车充电管理中,小区代理商可以被视为领导者,负责制定充电价格;而电动汽车用户则可以被视为跟随者,根据代理商的定价策略调整其充电行为。

本文将深入探讨基于主从博弈的智能小区代理商定价策略在电动汽车充电管理中的应用。首先,我们将构建一个主从博弈模型,明确代理商和用户的目标函数以及约束条件。其次,我们将分析主从博弈的均衡解及其性质,并探讨如何通过调整定价策略来引导用户行为。最后,我们将讨论该策略在实际应用中可能面临的挑战和未来的发展方向。

主从博弈模型构建

1. 参与者定义
  • 领导者:智能小区代理商 (Agent)

    • 目标:

       最大化其收益。收益主要来源于向电动汽车用户提供充电服务所收取的费用,并扣除从电网购电的成本。

    • 决策变量:

       充电服务价格。代理商可以根据不同的时间段或充电需求设定不同的价格。

  • 跟随者:电动汽车用户 (EV User)

    • 目标:

       最小化其充电成本和充电等待时间,同时满足自身的出行需求。

    • 决策变量:

       充电时间段、充电功率、充电量。用户会根据代理商设定的价格,以及自身对充电成本和等待时间的偏好,选择最优的充电策略。

2. 目标函数

图片

图片

3. 约束条件

图片

    主从博弈均衡分析

    主从博弈的求解通常采用逆向归纳法(Backward Induction)。首先求解跟随者的最优响应,然后将跟随者的最优响应代入领导者的目标函数,从而求解领导者的最优决策。

    1. 跟随者(电动汽车用户)的最优响应

    图片

    2. 领导者(小区代理商)的最优决策

    图片

    智能小区电动汽车充电管理策略

    基于上述主从博弈模型,智能小区代理商可以设计并实施多种定价策略:

    1. 分时电价 (Time-of-Use, TOU)

    这是最常见的定价策略,代理商将一天划分为不同的时间段,并设定不同的充电价格。例如,在夜间低谷时段设定较低的价格,在白天高峰时段设定较高的价格。通过价格信号,鼓励用户在夜间充电,从而平抑白天负荷。

    2. 实时电价 (Real-Time Pricing, RTP)

    代理商根据实时的电网负荷情况、可再生能源发电量以及市场电价,动态调整充电价格。这种策略能够更灵活地响应电网状况,但对用户来说,价格的不确定性可能增加。

    3. 需求响应 (Demand Response, DR) 激励

    代理商可以通过提供激励或惩罚措施来鼓励用户参与需求响应。例如,当电网负荷过高时,代理商可以提供额外折扣,鼓励用户延迟充电;或者在负荷特别低时,提供额外的优惠。

    4. 考虑可再生能源接入的定价策略

    如果智能小区内接入了太阳能、风能等可再生能源,代理商可以在可再生能源发电量充裕时段降低充电价格,鼓励用户利用绿色能源充电,从而提高可再生能源的消纳率。

    5. 考虑储能系统的定价策略

    小区内配置储能系统可以为电动汽车充电提供额外的灵活性。代理商可以利用储能在电价低谷时充电,在电价高峰时放电,从而进一步降低购电成本并稳定电网。此时,定价策略需要考虑储能系统的充放电成本和收益。

    策略优势与挑战

    优势:
    • 削峰填谷:

       有效引导用户在低谷时段充电,缓解高峰期电网压力。

    • 资源优化配置:

       促进充电桩资源的有效利用,避免充电桩空置或过载。

    • 提升电网稳定性:

       降低负荷波动,减少电压跌落和线路损耗,提升电网运行的可靠性。

    • 用户满意度提升:

       提供多样化的充电选择,用户可以根据自身需求和价格敏感度选择最优方案。

    • 促进可再生能源消纳:

       有助于电动汽车作为“移动储能”参与电网互动,提高可再生能源的利用效率。

    挑战:
    • 用户接受度:

       过于复杂的定价策略可能导致用户困惑,影响接受度。

    • 信息不对称:

       代理商需要准确预测用户需求和电网负荷,但信息获取可能存在偏差。

    • 技术实现:

       实时价格调整、充电桩智能调度等需要先进的通信和控制技术支持。

    • 市场竞争:

       如果多个代理商存在,它们之间的竞争可能影响定价策略的效果。

    • 政策法规:

       智能小区内的充电管理需要符合当地的电力市场政策和法规。

    仿真与案例分析(概念性)

    为了验证基于主从博弈的定价策略的有效性,可以进行仿真分析。

    仿真场景:

    • 基准场景:

       不采用任何定价策略,用户随机充电。

    • 场景一:

       采用固定分时电价,如峰谷平电价。

    • 场景二:

       采用基于主从博弈的动态定价策略,代理商根据预测负荷和用户响应动态调整价格。

    • 场景三:

       在场景二的基础上,考虑小区内光伏发电和储能系统。

    仿真结果预期:

    • 负荷曲线:

       相较于基准场景,采用主从博弈策略的场景能够显著平抑充电负荷曲线,降低峰值负荷。

    • 代理商收益:

       代理商的利润在主从博弈场景下有望得到提升。

    • 用户满意度:

       尽管部分用户可能支付更高的费用,但整体而言,由于充电等待时间缩短和充电选择的增加,用户满意度可能更高。

    • 可再生能源消纳:

       在考虑可再生能源的场景中,可以显著提高光伏发电的自发自用率。

    结论与展望

    本文探讨了基于主从博弈理论的智能小区代理商定价策略在电动汽车充电管理中的应用。通过将小区代理商视为领导者,电动汽车用户视为跟随者,我们构建了一个分层决策模型,旨在实现代理商利润最大化和用户充电成本及等待时间最小化的目标。该策略有望有效引导用户充电行为,平抑负荷曲线,从而提升电网运行的稳定性和经济性。

    未来的研究方向可以包括:

    1. 多代理商竞争:

       考虑智能小区内存在多个充电服务代理商,它们之间的竞争将如何影响定价策略和市场均衡。

    2. 不确定性因素:

       进一步考虑电动汽车到达时间、离去时间、充电需求等不确定性因素对定价策略的影响,引入随机博弈或鲁棒优化方法。

    3. 用户异质性:

       深入分析不同用户类型(如通勤型、休闲型)对充电价格和等待时间的差异化敏感度,设计更精细化的个性化定价策略。

    4. 区块链技术结合:

       探索将区块链技术应用于智能小区的电动汽车充电管理中,实现充电交易的透明、可信和高效。

    5. 与V2G技术融合:

       深入研究电动汽车作为分布式储能参与电网互动,与基于主从博弈的定价策略相结合,最大化电动汽车的综合价值。

    6. 实证研究与数据验证:

       基于实际运行数据对模型进行校准和验证,评估策略在真实场景下的有效性。

    ⛳️ 运行结果

    图片

    图片

    图片

    图片

    图片

    🔗 参考文献

    [1] 刘志勇.电动汽车充电站对电网的影响及有序充电控制策略的研究[D].华北电力大学,2013.DOI:10.7666/d.Y2384017.

    [2] 陈勇刚,黄梓瑜,王虹,等.家用电动汽车充电管理系统研究[J].陕西电力, 2017.DOI:CNKI:SUN:XBDJ.0.2017-01-011.

    [3] 杨官龙.基于驾驶意图与工况识别的插电式混合动力汽车能量管理策略研究[D].重庆大学,2014.

    📣 部分代码

    🎈 部分理论引用网络文献,若有侵权联系博主删除

     👇 关注我领取海量matlab电子书和数学建模资料 

    🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

    🌈 各类智能优化算法改进及应用
    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
    🌈 机器学习和深度学习时序、回归、分类、聚类和降维

    2.1 bp时序、回归预测和分类

    2.2 ENS声神经网络时序、回归预测和分类

    2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

    2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

    2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
    2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

    2.7 ELMAN递归神经网络时序、回归\预测和分类

    2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

    2.9 RBF径向基神经网络时序、回归预测和分类

    2.10 DBN深度置信网络时序、回归预测和分类
    2.11 FNN模糊神经网络时序、回归预测
    2.12 RF随机森林时序、回归预测和分类
    2.13 BLS宽度学习时序、回归预测和分类
    2.14 PNN脉冲神经网络分类
    2.15 模糊小波神经网络预测和分类
    2.16 时序、回归预测和分类
    2.17 时序、回归预测预测和分类
    2.18 XGBOOST集成学习时序、回归预测预测和分类
    2.19 Transform各类组合时序、回归预测预测和分类
    方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
    🌈图像处理方面
    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
    🌈 路径规划方面
    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
    🌈 无人机应用方面
    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
    🌈 通信方面
    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
    🌈 信号处理方面
    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
    🌈电力系统方面
    微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
    🌈 元胞自动机方面
    交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
    🌈 雷达方面
    卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
    🌈 车间调度
    零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

    👇

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    天天Matlab科研工作室

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值