【火电机组、风能、储能】高比例风电电力系统储能运行及配置分析附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、引言

在全球积极应对气候变化、大力推动能源转型的背景下,以风电为代表的可再生能源在电力系统中的占比持续攀升。风电凭借其清洁、可再生等显著优势,成为实现能源绿色低碳转型的关键力量。截至 2024 年底,全国全口径发电装机容量 33.5 亿千瓦,同比增长 14.6%,其中以风电、光伏为代表的可再生能源(不含水电)发电装机达到 14.5 亿千瓦,首次超过火电装机规模 。风电装机规模的迅速扩张,改变了传统电力系统的电源结构,但风电固有的间歇性、波动性和随机性,也给电力系统的安全稳定运行带来前所未有的挑战 。

当风电在电力系统中占比较高时,其出力的不稳定会导致电网频率波动、电压失衡以及功率缺额等问题。例如,在风速骤变或长时间无风的情况下,风电出力可能大幅下降甚至归零,若此时系统缺乏有效的调节手段,极易引发电力供应短缺,威胁电网的可靠运行 。储能系统作为一种能够灵活调节电力供需的关键技术,可在风电大发时段储存多余电能,在风电出力不足时释放储存的电能,从而有效平抑风电波动、增强电力系统稳定性,成为解决高比例风电接入难题的重要途径 。深入研究高比例风电电力系统中储能的运行及配置,对于提升电力系统对风电的消纳能力、保障能源安全、推动能源可持续发展具有重要的现实意义 。

二、高比例风电电力系统特性分析

2.1 风电出力特性

2.1.1 间歇性与波动性

风力发电依赖于自然风速,而风速受气象条件、地形地貌等多种复杂因素影响,具有显著的间歇性和波动性。在一天中,风速可能会出现多次快速变化,导致风电出力不稳定。从长期来看,不同季节、不同年份的风速也存在较大差异。以我国北方某大型风电场为例,春季风速相对较高且不稳定,风电出力波动频繁;冬季部分时段可能出现低温冰冻天气,影响风机正常运行,导致出力下降 。这种间歇性和波动性使得风电难以像传统火电那样提供稳定可靠的电力供应,给电力系统的调度和运行带来极大困难 。

2.1.2 预测难度大

准确预测风电出力是保障电力系统稳定运行的关键,但由于风速的复杂性和不确定性,风电预测难度较大。目前常用的风电预测方法包括基于物理模型、统计模型以及人工智能模型等,但均存在一定局限性。物理模型虽然能反映风机的物理特性和气象条件对风速的影响,但对气象数据的精度和模型参数的准确性要求极高,且计算复杂;统计模型主要基于历史数据建立预测模型,难以适应风速的突变和复杂变化;人工智能模型如神经网络等虽具有较强的学习能力,但容易出现过拟合问题,且对数据量和计算资源要求较高 。据相关研究表明,即使采用先进的预测技术,风电预测误差仍可达 10% - 20% ,这使得电力系统难以提前准确安排发电计划和调度资源,增加了系统运行风险 。

2.2 电力系统稳定性问题

2.2.1 频率稳定性

在高比例风电接入的电力系统中,风电的间歇性和波动性会导致系统有功功率不平衡,进而影响频率稳定性。当风电出力突然增加时,系统频率可能上升;反之,当风电出力骤减时,频率则会下降。由于风电缺乏像火电那样的惯性响应能力,不能及时对频率变化做出有效调节,若系统中其他调节手段不足,频率偏差可能超出允许范围,影响电力设备的正常运行,甚至引发系统崩溃 。例如,在某些风电装机占比较高的地区电网,曾出现过因风速突变导致风电出力大幅波动,进而引发频率快速下降,威胁电网安全的事件 。

2.2.2 电压稳定性

风电接入还会对电力系统电压稳定性产生影响。一方面,风电场通常位于偏远地区,通过长距离输电线路接入电网,线路阻抗较大,当风电出力变化时,会引起线路上的电压降变化,导致电网电压波动 。另一方面,风机的无功功率调节能力有限,在风电大发时,可能会出现无功功率过剩,导致电压升高;而在风电出力不足时,又可能出现无功功率缺额,引起电压降低 。电压的不稳定不仅会影响电力设备的寿命和性能,还可能导致系统发生电压崩溃事故 。例如,在一些海上风电场,由于输电距离远、电缆电容效应大,电压控制问题尤为突出,需要采取特殊的无功补偿和电压调节措施 。

三、储能技术在高比例风电电力系统中的作用

3.1 平抑风电功率波动

储能系统能够在风电功率波动时起到 “缓冲器” 的作用。当风电功率快速上升时,储能系统迅速吸收多余电能,避免功率过剩对电网造成冲击;当风电功率下降时,储能系统释放储存的电能,弥补功率缺额,维持电网功率平衡 。以某风电场配置的锂离子电池储能系统为例,在实际运行中,该储能系统可有效将风电功率波动范围控制在设定值以内,使风电输出更加平稳,减少了对电网的不利影响 。通过平抑风电功率波动,储能系统有助于提高风电在电力系统中的可调度性和可靠性,增强电网对风电的接纳能力 。

3.2 提升电力系统稳定性

3.2.1 频率调节

储能系统具有快速响应特性,能够在电力系统频率发生变化时迅速充放电,参与频率调节。当系统频率下降时,储能系统快速释放电能,增加系统有功功率供应,阻止频率进一步下降;当频率上升时,储能系统吸收电能,减少系统有功功率,使频率恢复到正常范围 。与传统的频率调节手段(如火电调频)相比,储能系统响应速度快、调节精度高,能够更有效地抑制频率波动,提高电力系统频率稳定性 。例如,在一些地区的电网中,通过配置储能系统,将频率偏差控制在更小范围内,提升了电网运行的稳定性和可靠性 。

3.2.2 电压调节

储能系统可以通过调节自身的充放电状态,改变其与电网之间的无功功率交换,从而实现对电网电压的调节 。当电网电压过低时,储能系统可以吸收无功功率,提高电网电压;当电网电压过高时,储能系统则发出无功功率,降低电网电压 。在一些分布式风电接入的配电网中,通过配置分布式储能系统,能够有效改善局部电网的电压质量,解决因风电接入引起的电压波动和电压越限问题 。例如,某配电网在安装储能系统后,电压合格率从原来的 85% 提升至 95% 以上,保障了电力用户的正常用电 。

3.3 促进风电消纳

在风电大发时段,若电网无法完全消纳风电电量,储能系统可将多余的风电储存起来,待用电高峰或风电出力不足时再释放,从而提高风电的消纳水平 。以我国部分地区建设的 “风光储一体化” 项目为例,通过合理配置储能系统,有效减少了弃风现象,提高了风电在电力系统中的发电量占比 。储能系统还可以通过参与电力市场交易,利用峰谷电价差获取收益,进一步激励其在促进风电消纳方面发挥作用 。例如,在一些具备电力市场的地区,储能系统在风电低价时段充电,在电价高峰时段放电,既实现了自身盈利,又促进了风电电量的有效利用 。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值