作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球对环境保护和可持续发展的关注度不断提高,综合能源系统因其能够实现多种能源的协同互补、高效利用,成为能源领域研究的热点。电解槽作为综合能源系统中实现电 - 氢转换的关键设备,其变载启停特性对系统的运行灵活性和经济性有着重要影响。同时,阶梯式碳交易机制作为一种有效的环境经济政策,通过对碳排放进行定价,激励企业减少碳排放,促使综合能源系统在运行过程中更加注重低碳化和绿色化。开展考虑电解槽变载启停特性与阶梯式碳交易机制的综合能源系统优化调度研究,有助于提高系统的运行效率、降低运行成本、减少碳排放,对推动能源转型和实现 “双碳” 目标具有重要的理论和现实意义。在该研究过程中,准确的预测技术对于优化调度起着至关重要的作用,新兴的 GWO - BP - AdaBoost 预测模型为解决这一问题提供了新的思路。
二、电解槽变载启停特性与阶梯式碳交易机制分析
(一)电解槽变载启停特性
电解槽在运行过程中,其功率输出可以在一定范围内灵活调整,以适应系统的负荷变化和能源供应情况。然而,频繁的变载和启停会对电解槽的设备寿命和运行效率产生不利影响,增加设备的维护成本和能耗。此外,电解槽在启动和停止过程中,存在一定的过渡时间和能量损耗,这些特性都需要在综合能源系统优化调度中予以充分考虑。精确预测电解槽的运行状态以及未来的负荷需求,对于合理安排其变载启停、降低相关负面影响具有重要意义,而 GWO - BP - AdaBoost 预测模型有望在这方面发挥关键作用。
(二)阶梯式碳交易机制
阶梯式碳交易机制是指根据企业的碳排放量划分不同的阶梯,对处于不同阶梯的碳排放设定不同的价格。当企业的碳排放量低于基准值时,可通过出售剩余的碳排放配额获得收益;当碳排放量超过基准值时,则需要购买额外的碳排放配额以满足排放要求。这种机制能够引导企业主动采取节能减排措施,优化能源消费结构,在综合能源系统的运行调度中,会直接影响系统的运行成本和决策策略。在该机制下,准确预测综合能源系统的碳排放量,有助于企业提前规划,合理调整能源使用策略,GWO - BP - AdaBoost 预测模型能够为碳排放量的精准预测提供技术支持。
三、GWO - BP - AdaBoost 预测模型原理及优势
(一)灰狼优化算法(GWO)
灰狼优化算法通过 4 种类型的灰狼(α、β、δ、ω)来模拟灰狼种群的社会等级,通过狼群跟踪、包围、追捕、攻击猎物等过程来模拟狼的捕猎行为,实现优化搜索目的。在 GWO - BP - AdaBoost 模型中,GWO 主要用于优化 BP 神经网络的初始权值和阈值。传统 BP 神经网络在训练过程中,初始权值和阈值是随机设定的,这可能导致网络陷入局部最优解,而 GWO 强大的全局搜索能力可以帮助 BP 神经网络找到更优的初始参数,提高网络的收敛速度和预测精度。
(二)BP 神经网络
BP 神经网络是人工神经网络中的一种监督式的学习算法,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。它能够通过误差反向传播不断调整网络的权值和阈值,以实现对输入数据的准确映射和预测。在本模型中,BP 神经网络负责对综合能源系统中的各类数据,如能源产量、负荷需求、碳排放量等进行学习和预测。然而,其自身存在收敛速度慢、易陷入局部最优等问题,通过与 GWO 结合得以改善。
(三)AdaBoost 算法
AdaBoost 是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。在预测问题中,它通过不断调整样本权重,聚焦于难以分类或预测的样本,从而提升整体预测性能。在 GWO - BP - AdaBoost 模型中,AdaBoost 将多个经过 GWO 优化后的 BP 神经网络弱预测器进行集成,进一步提高预测的准确性和稳定性。
(四)GWO - BP - AdaBoost 模型优势
该集成模型结合了三者的优点,GWO 优化 BP 神经网络的初始参数,使其跳出局部最优,提升收敛速度;BP 神经网络负责对复杂的能源系统数据进行非线性映射和预测;AdaBoost 将多个 BP 神经网络预测结果进行集成,增强了模型对不同类型数据的适应性和预测的可靠性。相较于单一的预测模型,GWO - BP - AdaBoost 在处理综合能源系统中复杂多变的数据时,能够提供更精准、稳定的预测结果,为优化调度决策提供有力依据。
四、综合能源系统优化调度模型构建
五、基于 GWO - BP - AdaBoost 的优化调度模型求解流程
(一)数据收集与预处理
收集综合能源系统的历史数据,包括各类能源的产量、负荷需求、设备运行状态、碳排放量以及能源价格等信息。对这些数据进行清洗,去除异常值和噪声,然后进行归一化处理,将数据映射到 [0, 1] 区间,以适应 GWO - BP - AdaBoost 模型的输入要求。
(二)模型训练
- 初始化 GWO 算法的参数,包括狼群数量、最大迭代次数等。利用 GWO 算法对 BP 神经网络的初始权值和阈值进行优化。在优化过程中,根据 BP 神经网络预测误差构建适应度函数,引导 GWO 搜索更优的权值和阈值。
- 将经过 GWO 优化后的 BP 神经网络作为弱预测器,利用 AdaBoost 算法进行迭代训练。在每次迭代中,根据上一轮预测结果调整样本权重,使得模型更加关注预测错误的样本。经过多轮迭代,得到多个性能优良的 BP 神经网络弱预测器,并将它们集成到最终的 GWO - BP - AdaBoost 预测模型中。
(三)预测与优化调度
- 使用训练好的 GWO - BP - AdaBoost 模型对综合能源系统未来时段的负荷需求、能源产量、碳排放量等关键数据进行预测。
- 将预测结果代入综合能源系统优化调度模型中,以经济性和低碳性为目标,在满足各类约束条件下,利用智能优化算法(如粒子群优化算法、遗传算法等)对系统内各设备的运行状态进行优化调度,确定发电设备的发电量、电解槽的功率调节、能源的采购与存储策略以及碳交易策略等,实现综合能源系统的最优运行。
六、案例分析
(一)案例系统构建
构建一个包含风力发电机、光伏电站、燃气轮机、电锅炉、电解槽、氢燃料电池以及储能设备的综合能源系统案例。设定各设备的参数、负荷曲线、能源价格以及阶梯式碳交易机制的具体参数。收集该案例系统历史运行数据,用于 GWO - BP - AdaBoost 模型的训练和验证。
(二)仿真结果分析
- 预测性能分析:对比 GWO - BP - AdaBoost 模型与传统 BP 神经网络、单一 GWO 优化的 BP 神经网络以及其他常见预测模型(如支持向量机、ARIMA 等)在负荷需求、能源产量和碳排放量预测上的准确性。通过均方根误差(RMSE)、平均绝对误差(MAE)等指标评估,验证 GWO - BP - AdaBoost 模型在预测精度上的优势。
- 经济性分析:对比考虑电解槽变载启停特性与阶梯式碳交易机制前后,且在使用 GWO - BP - AdaBoost 预测模型进行优化调度和未使用该模型(采用传统预测方法)时综合能源系统的运行成本。分析不同因素对成本的影响程度,展示 GWO - BP - AdaBoost 模型辅助下的优化调度在降低运行成本方面的显著效果。
- 低碳性分析:比较系统在不同调度策略下的碳排放量,评估阶梯式碳交易机制对系统碳排放的约束效果,以及 GWO - BP - AdaBoost 模型的预测对实现低碳排放的促进作用。
- 设备运行分析:分析电解槽在优化调度过程中的变载启停情况,以及其他设备的运行状态,验证基于 GWO - BP - AdaBoost 预测的优化调度模型对设备运行的合理调控作用,确保设备在高效运行的同时,满足各类运行约束。
七、研究结论与展望
(一)研究结论
- 考虑电解槽变载启停特性与阶梯式碳交易机制能够有效降低综合能源系统的运行成本,提高系统的经济性。GWO - BP - AdaBoost 预测模型的引入,进一步提升了对系统关键数据的预测精度,使得优化调度决策更加科学合理,显著增强了经济性优化效果。
- 阶梯式碳交易机制对综合能源系统的碳排放具有显著的约束和引导作用,有助于推动系统实现低碳化运行。GWO - BP - AdaBoost 模型准确的碳排放量预测,为系统在碳交易机制下合理规划碳排放策略提供了有力支持,促进了低碳性目标的达成。
- 所构建的基于 GWO - BP - AdaBoost 预测的综合能源系统优化调度模型和求解方法,能够合理调度系统内各设备的运行,实现能源的高效利用和系统的优化运行。通过案例分析验证了模型和方法的有效性和优越性。
(二)研究展望
- 进一步考虑更多不确定性因素,如可再生能源发电的波动性、负荷预测的误差等,完善 GWO - BP - AdaBoost 预测模型和综合能源系统优化调度模型。研究如何将这些不确定性因素更好地融入模型中,提高模型的鲁棒性和适应性。
- 研究如何将阶梯式碳交易机制与其他环境经济政策相结合,形成更有效的激励约束机制,促进综合能源系统的可持续发展。同时,探索 GWO - BP - AdaBoost 模型在评估不同政策组合对系统影响方面的应用潜力。
- 探索更加高效的优化算法和求解技术,提高 GWO - BP - AdaBoost 模型的训练速度和预测精度,以及综合能源系统优化调度模型的求解效率,以满足实际工程应用中对实时性和准确性的更高需求。例如,研究将量子计算等新兴技术与现有算法相结合的可能性。
- 拓展 GWO - BP - AdaBoost 预测模型在综合能源系统中的应用范围,除了负荷需求、能源产量和碳排放量预测外,探索其在设备故障预测、能源市场价格波动预测等方面的应用,为综合能源系统的全方位优化运行提供更全面的技术支持。
⛳️ 运行结果
🔗 参考文献
[1] 韩韬.基于改进PSO的BP_Adaboost算法的优化与改进[D].桂林理工大学,2014.DOI:10.7666/d.D553315.
[2] 龙伶敏.基于Adaboost的人脸检测方法及眼睛定位算法研究[D].电子科技大学,2008.DOI:CNKI:CDMD:2.2008.122744.
[3] 许剑,张洪伟.Adaboost算法分类器设计及其应用[J].四川理工学院学报:自然科学版, 2014, 27(1):4.DOI:10.11863/j.suse.2014.01.08.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇