✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在智能交通与自动驾驶快速发展的当下,车辆姿态的精确控制成为保障行车安全与提升驾驶体验的关键。线性二次型调节器(LQR)、滑模控制器(SMC)以及积分器背模(Integrator Backstepping)三种控制算法凭借独特优势,在车辆姿态确定和控制系统中备受关注。本文将深入探讨这三种算法的原理、在车辆控制中的应用,并对比其性能差异。
一、核心控制算法原理
1.1 线性二次型调节器(LQR)
LQR 是一种基于状态空间的最优控制算法,通过构建包含状态变量和控制变量的二次型性能指标函数,在满足系统动态方程约束下,寻找使该函数最小化的控制律。其核心思想是在控制效果与控制能量消耗之间取得平衡,在确保车辆姿态稳定的同时,尽量降低控制动作带来的能量损耗。
对于车辆姿态控制,首先需要建立车辆的线性化状态空间模型,描述车辆姿态角度、角速度等状态变量与控制输入(如转向角度、驱动力矩等)之间的关系。然后,根据实际需求设计合适的权重矩阵,调整状态变量和控制变量在性能指标函数中的重要程度,进而求解得到最优控制律,实现对车辆姿态的精确调节 。
1.2 滑模控制器(SMC)
滑模控制是一种变结构控制方法,其特点在于设计一个滑模面,使系统状态在有限时间内到达并保持在该滑模面上运动,此时系统表现出对内部参数摄动和外部干扰的强鲁棒性。在车辆姿态控制中,滑模控制器根据车辆实际姿态与期望姿态的偏差,生成具有高频切换特性的控制信号。
例如,当车辆出现侧倾趋势时,滑模控制器会迅速调整悬架系统的阻尼力或驱动力分配,迫使车辆姿态快速回到稳定状态。即使车辆在行驶过程中遭遇路面颠簸、侧风干扰等不确定因素,滑模控制器依然能够通过其独特的切换机制,保证车辆姿态稳定在滑模面附近,实现可靠控制。
1.3 积分器背模(Integrator Backstepping)
积分器背模是一种基于递归设计的控制方法,通过逐步构建子系统的虚拟控制律,最终得到实际的控制输入。该方法从系统的最底层子系统开始设计,利用积分器将系统状态逐步引入控制律中,每一步设计都确保子系统的稳定性,并为下一步设计提供基础。
在车辆姿态控制系统中,积分器背模可以将车辆的姿态控制问题分解为多个子问题,如先控制车辆的横摆角速度,再基于横摆角速度的控制结果进一步控制车辆的侧向位移和姿态角度。通过这种逐步推进的方式,能够有效处理车辆系统中的非线性和耦合特性,实现精确的姿态控制 。
二、不同算法在车辆姿态控制中的应用
2.1 LQR 算法的应用场景
LQR 算法适用于车辆在平稳路况下的姿态微调与优化。例如,在高速公路自动驾驶场景中,车辆需要保持稳定的行驶姿态,LQR 算法可以根据车辆的实时速度、路面状况等信息,精确调整转向系统和动力分配,使车辆在较小的控制能量消耗下,保持稳定的直线行驶或平稳转向,提升乘坐舒适性和燃油经济性。
2.2 滑模控制器的应用场景
滑模控制器在应对复杂路况和突发干扰时优势显著。在越野行驶或雨雪湿滑路面上,车辆容易受到外界不确定因素影响而产生姿态失稳,滑模控制器能够快速响应,通过剧烈调整车轮制动力矩或悬架参数,帮助车辆克服侧滑、打滑等问题,保障行车安全 。
2.3 积分器背模的应用场景
积分器背模在处理具有强非线性特性的车辆姿态控制问题时表现出色。对于一些特殊车辆,如具备复杂悬架结构或多轴转向功能的车辆,其姿态控制涉及多个变量的强耦合与非线性关系,积分器背模通过递归设计控制律,能够有效解决此类复杂问题,实现精确的姿态确定和控制。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
[1] 薛佳乐,程珩.基于串级PID四旋翼飞行器控制系统研究[J].电子技术应用, 2017, 43(5):5.DOI:10.16157/j.issn.0258-7998.2017.05.033.
[2] 叶树球.四翼飞行器姿态控制算法研究[D].安徽理工大学[2025-07-02].DOI:CNKI:CDMD:2.1015.581925.
[3] 邵瑞.基于滑模观测器的环形倒立摆控制系统的设计与实现[D].湖南工业大学[2025-07-02].DOI:10.7666/d.D624776.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇